Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 14(4): 909-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22176665

RESUMEN

The association of archaea with marine sponges was first described 15 years ago and their role in the nitrification process in Mediterranean and tropical sponges has been suggested. Here we explore the occurrence and abundance of potential ammonia-oxidizing archaea (AOA) in four morphologically different cold-water sponges (Phakellia ventilabrum, Geodia barretti, Antho dichotoma and Tentorium semisuberites) from the sublittoral and upper bathyal zone [Correction added on 30 December 2011, after first online publication on 19 December 2011: The term 'mesopelagic zone' has been replaced.] of the Norwegian coast, and relate them to nitrification rates determined in laboratory incubations. Net nitrification rates, calculated from the sum of nitrite and nitrate release during 24 h, were up to 1880 nmol N cm(-3) day(-1); i.e. comparable with those measured in Mediterranean sponges. Furthermore, a high abundance of archaeal cells was determined by fluorescence in situ hybridizations (CARD-FISH) and quantitative PCR, targeting archaeal amoA genes (encoding the alpha subunit of ammonia monooxygenase). AmoA genes as well as amoA transcripts were either exclusively detectable from archaea or were orders of magnitudes higher in abundance than their bacterial counterparts. Phylogenetic analyses of AOA and bacterial nitrite oxidizers (genus Nitrospira) confirmed the presence of specific populations of nitrifying microorganisms in the sponge mesohyl, which either were affiliated with groups detected earlier in marine sponges or were typical inhabitants of cold- and deep-water environments. Estimated cell-specific nitrification rates for P. ventilabrum were 0.6 to 6 fmol N archaeal cell(-1) day(-1), thus comparable with planktonic organisms. Our results identify AOA as the major drivers of nitrification in four cold-water sponges, and indicate that these archaea may be considered as a relevant factor in nitrogen cycling in ocean regions with high sponge biomass.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Nitrificación/fisiología , Poríferos/microbiología , Animales , Archaea/clasificación , Archaea/genética , Secuencia de Bases , Datos de Secuencia Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Oxidorreductasas/genética , Filogenia
2.
Environ Microbiol ; 14(5): 1308-24, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22364353

RESUMEN

Geodia barretti is a marine cold-water sponge harbouring high numbers of microorganisms. Significant rates of nitrification have been observed in this sponge, indicating a substantial contribution to nitrogen turnover in marine environments with high sponge cover. In order to get closer insights into the phylogeny and function of the active microbial community and the interaction with its host G. barretti, a metatranscriptomic approach was employed, using the simultaneous analysis of rRNA and mRNA. Of the 262 298 RNA-tags obtained by pyrosequencing, 92% were assigned to ribosomal RNA (ribo-tags). A total of 109 325 SSU rRNA ribo-tags revealed a detailed picture of the community, dominated by group SAR202 of Chloroflexi, candidate phylum Poribacteria and Acidobacteria, which was different in its composition from that obtained in clone libraries prepared form the same samples. Optimized assembly strategies allowed the reconstruction of full-length rRNA sequences from the short ribo-tags for more detailed phylogenetic studies of the dominant taxa. Cells of several phyla were visualized by FISH analyses for confirmation. Of the remaining 21 325 RNA-tags, 10 023 were assigned to mRNA-tags, based on similarities to genes in the databases. A wide range of putative functional gene transcripts from over 10 different phyla were identified among the bacterial mRNA-tags. The most abundant mRNAs were those encoding key metabolic enzymes of nitrification from ammonia-oxidizing archaea as well as candidate genes involved in related processes. Our analysis demonstrates the potential and limits of using a combined rRNA and mRNA approach to explore the microbial community profile, phylogenetic assignments and metabolic activities of a complex, but little explored microbial community.


Asunto(s)
Geodia/microbiología , Metagenoma/genética , Transcriptoma/genética , Animales , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Eucariontes/genética , Geodia/genética , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
3.
Microbiol Mol Biol Rev ; 71(2): 295-347, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17554047

RESUMEN

Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Poríferos/microbiología , Animales , Bacterias/metabolismo , Biotecnología , Ecología , Poríferos/fisiología , Conducta Social , Simbiosis
4.
Environ Microbiol ; 11(9): 2228-43, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19453700

RESUMEN

Marine sponges constitute major parts of coral reefs and deep-water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm(-3) sponge day(-1) were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia-oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite-oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes ((15)NO(3)(-) and (15)NH(4)(+)) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm(-3) sponge day(-1) and 3 nmol N cm(-3) sponge day(-1) respectively. Accordingly, sequences closely related to 'Candidatus Scalindua sorokinii' and 'Candidatus Scalindua brodae' were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge-microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as so far unrecognized nitrogen sinks in the ocean. In certain marine environments with high sponge cover, sponge-mediated nitrogen mineralization processes might even be more important than sediment processes.


Asunto(s)
Geodia/metabolismo , Geodia/microbiología , Nitrógeno/metabolismo , Aerobiosis , Anaerobiosis , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Nitratos/análisis , Nitritos/análisis , Fijación del Nitrógeno , Filogenia , Compuestos de Amonio Cuaternario/metabolismo , ARN Ribosómico 16S/genética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA