Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chem ; 96(13): 5071-5077, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513052

RESUMEN

Introduction of a dielectric material in a nuclear magnetic resonance (NMR) probe head modifies the frequency response of the probe circuit, a phenomenon revealed by detuning of the probe. For NMR spectroscopy, this detuning is corrected for by tuning and matching the probe head prior to the NMR measurement. The magnitude of the probe detuning, "the dielectric shift", provides direct access to the dielectric properties of the sample, enabling NMR spectrometers to simultaneously perform both dielectric and NMR spectroscopy. By measuring sample dielectric permittivity as a function of frequency, dielectric permittivity spectroscopy can be performed using the new methodology. As a proof of concept, this was evaluated on methanol, ethanol, 1-propanol, 1-pentanol, and 1-octanol using a commercial cross-polarization magic angle spinning (CPMAS) NMR probe head. The results accurately match the literature data collected by standard dielectric spectroscopy techniques. Subsequently, the method was also applied to investigate the solvent-surface interactions of water confined in the micropores of an MFI-type, hydrophilic zeolite with a Si/Al ratio of 11.5. In the micropores, water adsorbs to BroÌ·nsted acid sites and defect sites, resulting in a drastically decreased dielectric permittivity of the nanoconfined water. Theoretical background for the new methodology is provided using an effective electric circuit model of a CPMAS probe head with a solenoid coil, describing the detuning resulting from the insertion of dielectric samples in the probe head.

2.
Anal Chem ; 95(46): 16936-16942, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37931115

RESUMEN

High-pressure nuclear magnetic resonance (NMR) spectroscopy finds remarkable applications in catalysis, protein biochemistry and biophysics, analytical chemistry, material science, energy, and environmental control but requires expensive probe heads and/or sample cells. This contribution describes the design, construction, and testing of a low-cost 5 mm NMR tube suitable for high-pressure NMR measurements of up to 30 MPa. The sample cell comprises a standard, 5 mm single-crystal sapphire tube that has been fitted to a section of a relatively inexpensive polyether ether ketone (PEEK) HPLC column. PEEK HPLC tubing and connectors enable integration with a gas rig or a standard HPLC pump located outside the stray field of the magnet. The cell is compatible with any 5 mm static NMR probe head, exhibits almost zero background in NMR experiments, and is compatible with any liquid, gas, temperature, or pressure range encountered in HPLC experimentation. A specifically designed transport case enables the safe handling of the pressurized tube outside the probe head. The performance of the setup was evaluated using in situ high-field NMR spectroscopy and MRI performed during the formation of bulk and nanoconfined clathrate hydrates occluding methane, ethane, and hydrogen.

3.
Molecules ; 28(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764230

RESUMEN

Selective catalytic reduction (SCR) of NOx by ammonia is one of the dominant pollution abatement technologies for near-zero NOx emission diesel engines. A crucial step in the reduction of NOx to N2 with Cu zeolite NH3-SCR catalysts is the generation of a multi-electron donating active site, implying the permanent or transient dimerization of Cu ions. Cu atom mobility has been implicated by computational chemistry as a key factor in this process. This report demonstrates how variable temperature 1H NMR reveals the Cu induced generation of sharp 1H resonances associated with a low concentration of sites on the zeolite. The onset temperature of the appearance of these signals was found to strongly correlate with the NH3-SCR activity and was observed for a range of catalysts covering multiple frameworks (CHA, AEI, AFX, ERI, ERI-CHA, ERI-OFF, *BEA), with different Si/Al ratios and different Cu contents. The results point towards universal applicability of variable temperature NMR to predict the activity of a Cu-zeolite SCR catalyst. The unique relationship of a spectroscopic feature with catalytic behavior for zeolites with different structures and chemical compositions is exceptional in heterogeneous catalysis.

4.
J Am Chem Soc ; 144(39): 18054-18061, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36136766

RESUMEN

Water plays a central role in the crystallization of a variety of organic, inorganic, biological, and hybrid materials. This is also true for zeolites and zeolite-like materials, an important class of industrial catalysts and adsorbents. Water is always present during their hydrothermal synthesis, either with or without organic species as structure-directing agents. Apart from its role as a solvent or a catalyst, structure direction by water in zeolite synthesis has never been clearly elucidated. Here, we report the crystallization of phosphate-based molecular sieves using rationally designed, hydrogen-bonded water-aminium assemblies, resulting in molecular sieves exhibiting the crystallographic ordering of heteroatoms. We demonstrate that a 1:1 assembly of water and diprotonated N,N-dimethyl-1,2-ethanediamine acts as a structure-directing agent in the synthesis of a silicoaluminophosphate material with phillipsite (PHI) topology, using SMARTER crystallography, which combines single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy, as well as ab initio molecular dynamics simulations. The molecular arrangement of the hydrogen-bonded assembly matches well with the shape and size of subunits in the PHI structure, and their charge distributions result in the strict ordering of framework tetrahedral atoms. This concept of structure direction by water-containing supramolecular assemblies should be applicable to the synthesis of many classes of porous materials.


Asunto(s)
Zeolitas , Hidrógeno , Fosfatos/química , Solventes , Agua , Zeolitas/química
5.
Anal Chem ; 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36579853

RESUMEN

Porous silica is used as a drug delivery agent to improve the bioavailability of sparsely soluble compounds. In this approach, the active pharmaceutical ingredient (API) is commonly loaded into the porous silica by incipient wetness impregnation using organic solvents. Subsequent solvent elimination is critical as the residual solvent concentration cannot exceed threshold values set by health and safety regulations (e.g., EMA/CHMP/ICH/82260/2006). For dichloromethane and methanol, for example, residual concentrations must be below 600 and 3000 ppm, respectively. Today, EU and USA Pharmacopoeias recommend tedious procedures for residual solvent quantification, requiring extraction of the solvent and subsequent quantification using capillary gas chromatography with static headspace sampling (sHS-GC). This work presents a new method based on the combination of standard addition and absolute quantification using magic-angle spinning nuclear magnetic resonance spectroscopy (MAS qNMR). The methodology was originally developed for absolute quantification of water in zeolites and has now been validated for quantification of residual solvent in drug formations using mesoporous silica loaded with ibuprofen dissolved in DCM and MeOH as test samples. Interestingly, formulations prepared using as-received or predried mesoporous silica contained 5465 versus 484.9 ppm DCM, respectively. This implies that the initial water content of the silica carrier can impact the residual solvent concentration in drug-loaded materials. This observation could provide new options to minimize the occurrence of these undesired solvents in the final formulation.

6.
Chemistry ; 28(68): e202202621, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36005885

RESUMEN

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

7.
Phys Chem Chem Phys ; 24(25): 15428-15438, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35708199

RESUMEN

LEV type zeolites were synthesized with four different structure-directing agents and converted to copper loaded NH3-SCR catalysts. The synthesis recipe was found to impact the respective Al population in the two topologically different framework sites in double and single 6-rings, resolvable by 27Al MAS NMR spectroscopy. Hydrothermal stability was found to be related to the silanol concentration, Si/Al ratio, particle size, crystal morphology, crystal defects, external surface area, and microporosity. Catalytic activity in NH3-SCR was dependent on preferential Al siting in the double 6-rings. Levinite synthesized using adamantylamine showed the strongest preference for Al atoms sitting in double 6-ring sites, and showed the highest catalytic turnover frequency. Unfortunately, because of the large crystal size, copper loading of this sample was limited to 0.6 wt% while other samples could be loaded with copper up to 3.3 wt%. An optimum combination of hydrothermal stability and catalytic activity was obtained with N,N'-bis-dimethylpentanediyldiammonium dibromide as structure-directing agent.

8.
Chemistry ; 27(64): 15944-15953, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34624150

RESUMEN

Layered double hydroxides (LDHs) serve a score of applications in catalysis, drug delivery, and environmental remediation. Smarter crystallography, combining X-ray diffraction and NMR spectroscopy revealed how interplay between carbonate and pH determines the LDH structure and Al ordering in ZnAl LDH. Carbonate intercalated ZnAl LDHs were synthesized at different pH (pH 8.5, pH 10.0, pH 12.5) with a Zn/Al ratio of 2, without subsequent hydrothermal treatment to avoid extensive recrystallisation. In ideal configuration, all Al cations should be part of the LDH and be coordinated with 6 Zn atoms, but NMR revealed two different Al local environments were present in all samples in a ratio dependent on synthesis pH. NMR-crystallography, integrating NMR spectroscopy and X-ray diffraction, succeeded to identify them as Al residing in the highly ordered crystalline phase, next to Al in disordered material. With increasing synthesis pH, crystallinity increased, and the side phase fraction decreased. Using 1 H-13 C, 13 C-27 Al HETCOR NMR in combination with 27 Al MQMAS, 27 Al-DQ-SQ measurements and Rietveld refinement on high-resolution PXRD data, the extreme anion exchange selectivity of these LDHs for CO3 2- over HCO3 - was linked to strict Al and CO3 2- ordering in the crystalline LDH. Even upon equilibration of the LDH in pure NaHCO3 solutions, only CO3 2- was adsorbed by the LDH. This reveals the structure directing role of bivalent cations such as CO3 2- during crystallization of [M2+ 4 M3+ 2 (OH)2 ]2+ [A2- ]1 ⋅yH2 O LDH phases.

9.
Chem Soc Rev ; 49(9): 2557-2569, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32238999

RESUMEN

Water is the sustainable solvent of excellence, but its high polarity limits the solubility of non-polar compounds. Confinement of water in hydrophobic pores alters its hydrogen bonding structure and related properties such as dielectric constant and solvation power. Whether this special state of confined water can be rendered useful in chemical processes is hitherto underexplored. Confining water in hydrophobic nanopores could be a way to modulate water solvent properties, enabling the use of water as a tuneable solvent (WaTuSo). Applying pressure forces a heterogeneous mixture of poorly soluble molecules and water into hydrophobic nanopores of a host material where the lowered polarity of water enhances dissolution. Decompression after reaction causes expulsion of the solution from the pores and spontaneous demixing of reaction products because water returns to its normal polar state. Temporary dissolution enhancement during confinement is expected to be advantageous to chemical reaction and molecular storage. Nano-confined water offers a potential alternative to compression for storing CH4 and H2 gas, and opens new opportunities for green chemistry such as aqueous phase hydrogenation reactions which benefit from enhanced hydrogen solubility. Unprecedented control in time and space over H2O solvation properties in a WaTuSo system will enable new technologies with major scientific and societal impact.

10.
Anal Chem ; 92(19): 13004-13009, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32830954

RESUMEN

A protocol for the detection of trace amounts of quartz in amorphous silica gels by NMR spectroscopy was developed and tested on commercially available samples. Using natural abundance 29Si MAS NMR spectroscopy with CPMG acquisition and standard addition of crystalline quartz, quantitative detection of quartz concentrations down to 0.1% wt. was achieved. CPMG permitted to suppress the amorphous silica-derived signal, benefitting from the extremely long T2 relaxation time of quartz in 29Si and hence dramatically increasing the sensitivity. Dedicated post-processing exploiting the known CPMG spikelet frequencies allowed to probe the near-absence of quartz in commercial, 100% silica samples, enabling assessment of conformity of unknown samples to EU legislation (REACH).

11.
Chem Soc Rev ; 48(1): 134-156, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444247

RESUMEN

Synthetic transition aluminas (χ, κ, θ, γ, δ, η, ρ) exhibit unique adsorptive and catalytic properties leading to numerous practical applications. Generated by thermal transformation of aluminium (oxy)hydroxides, structural differences between them arise from the variability of aluminium coordination numbers and degree of dehydroxylation. Unequivocal identification of these phases using X-ray diffraction has proven to be very difficult. Quadrupolar interactions of 27Al nuclei, highly sensitive to each site symmetry, render advanced 27Al solid-state NMR a unique spectroscopic tool to fingerprint and identify the different phases. In this paper, 27Al NMR spectroscopic data on alumina reported in literature are collected in a comprehensive library. Based on this dataset, a new 3D correlative method of NMR parameters is presented, enabling fingerprinting and identification of such phases. Providing a gold standard from crystalline samples, this approach demonstrates that any sort of crystalline, ill crystallized or amorphous, mixed periodic or aperiodically ordered transition alumina can now be assessed beyond the current limitations of characterisation. Adopting the presented approach as a standard characterisation of alumina samples will readily reveal NMR parameter-structure-property relations suitable to develop new or improved applications of alumina. Methodological guidance is provided to assist consistent implementation of this characterisation throughout the fields involved.

12.
Chemistry ; 25(27): 6753-6762, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30875140

RESUMEN

Solid acid catalysts are central in our chemical industry and are major players in the valorization of bioresources. However, there is still a need to develop solid acid catalysts with enhanced acid strength and improved, or tunable, physicochemical profile to enhance the efficiency and sustainability of chemical processes. Here, a modular approach to tune the acid strength and surface polarity of silica-supported sulfonic acid catalysts, based on a versatile copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based anchoring scheme, is presented. The CuAAC-formed triazole link was used to enhance the activity of the grafted sulfonic acids and to pair the acid sites with secondary hydrophobic functions. The beneficial effects of both the triazolium link and the paired hydrophobic site, as well as the optimal positioning of the sulfonic moiety on the triazole ring, are discussed in model esterification reactions.

13.
Phys Chem Chem Phys ; 20(19): 13528-13536, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29726873

RESUMEN

Microporous silica and silica-alumina powders exhibit a reversible uptake and release of ammonia gas from water vapor containing gas mixtures at ambient temperature, with capacities of 0.9 and 2.0 mmol g-1 in the presence of 100 ppm and 1000 ppm NH3, respectively. The ammonia trapping mechanism was revealed using a combination of direct excitation 1H MAS, 1H-1H EXSY and 1H DQ-SQ NMR spectroscopy, indicating that the major part of the captured ammonia is blended in the hydrogen bonded water network in the pores of the adsorbent. A small fraction is irreversibly bound as result of protonation and chemisorption. While common ammonia adsorbents need thermal regeneration, microporous silica-alumina can be regenerated by sweeping with dry gas at ambient temperature, desorbing the physisorbed fraction together with occluded water. As carbon dioxide does not interfere with the ammonia absorption process, this reversible absorption process of ammonia gas at ambient temperature is particularly attractive for sensor applications.

14.
Inorg Chem ; 56(20): 12401-12409, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28949129

RESUMEN

The stability of the Keggin polycation ε-Al13 is monitored by 27Al NMR and ferron colorimetric assay upon heating aluminum aqueous solutions containing different amino acids with overall positive, negative, or no charge at pH 4.2. A focus on the effect of the amino acids on the isomerization process from ε- to δ-Al13 is made, compared and discussed as a function of the type of organic additive. Amino acids such as glycine and ß-alanine, with only one functional group interacting relatively strongly with aluminum polycations, accelerate isomerization in a concentration-dependent manner. The effect of this class of amino acids is also found increasing with the pKa of their carboxylic acid moiety, from a low impact from proline up to more than a 15-fold increased rate from the stronger binders such as glycine or ß-alanine. Amino acids with relatively low C-terminal pKa, but bearing additional potential binding moieties such as free alcohol (hydroxyl group) moiety of serine or the amide of glutamine, speed the isomerization comparatively and even more than glycine or ß-alanine, glutamine leading to the fastest rates observed so far. With aspartic and glutamic acids, changes in aluminum speciation are faster and significant even at room temperature but rather related to the reorganization toward slow reacting complexed oligomers than to the Al13 isomerization process. The linear relation between the apparent rate constant of isomerization and the additive concentration points to a first-order process with respect to the additives. Most likely, the dominant process is an accelerated ε-Al13 dissociation, increasing the probability of δ isomer formation.

15.
J Am Chem Soc ; 138(8): 2802-8, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26842944

RESUMEN

The reaction mechanism of etherification of ß-citronellene with ethanol in liquid phase over acid zeolite beta is revealed by in situ solid-state (13)C NMR spectroscopy. Comparison of (13)C Hahn-echo and (1)H-(13)C cross-polarization NMR characteristics is used to discriminate between molecules freely moving in liquid phase outside the zeolite and molecules adsorbed inside zeolite pores and in pore mouths. In the absence of ethanol, ß-citronellene molecules enter zeolite pores and react to isomers. In the presence of ethanol, the concentration of ß-citronellene inside zeolite pores is very low because of preferential adsorption of ethanol. The etherification reaction proceeds by adsorption of ß-citronellene molecule from the external liquid phase in a pore opening where it reacts with ethanol from inside the pore. By competitive adsorption, ethanol prevents the undesired side reaction of ß-citronellene isomerization inside zeolite pores. ß-citronellene etherification on zeolite beta is suppressed by bulky base molecules (2,4,6-collidine and 2,6-ditertiarybutylpyridine) that do not enter the zeolite pores confirming the involvement of easily accessible acid sites in pore openings. The use of in situ solid-state NMR to probe the transition from intracrystalline catalysis to pore mouth catalysis depending on reaction conditions is demonstrated for the first time. The study further highlights the potential of this NMR approach for investigations of adsorption of multicomponent mixtures in general.

16.
J Chem Theory Comput ; 20(9): 3823-3838, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38650071

RESUMEN

Solid-state nuclear magnetic resonance spectroscopy is routinely used in the field of covalent organic frameworks to elucidate or confirm the structure of the synthesized samples and to understand dynamic phenomena. Typically this involves the interpretation and simulation of the spectra through the assumption of symmetry elements of the building units, hinging on the correct assignment of each line shape. To avoid misinterpretation resulting from library-based assignment without a theoretical basis incorporating the impact of the framework, this work proposes a first-principles computational protocol for the assignment of experimental spectra, which exploits the symmetry of the underlying building blocks for computational feasibility. In this way, this protocol accommodates the validation of previous experimental assignments and can serve to complement new NMR measurements.

17.
Cryst Growth Des ; 23(5): 3338-3348, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37159660

RESUMEN

Recently identified zeolite precursors consisting of concentrated, hyposolvated homogeneous alkalisilicate liquids, hydrated silicate ionic liquids (HSIL), minimize correlation of synthesis variables and enable one to isolate and examine the impact of complex parameters such as water content on zeolite crystallization. HSIL are highly concentrated, homogeneous liquids containing water as a reactant rather than bulk solvent. This simplifies elucidation of the role of water during zeolite synthesis. Hydrothermal treatment at 170 °C of Al-doped potassium HSIL with chemical composition 0.5SiO2:1KOH:xH2O:0.013Al2O3 yields porous merlinoite (MER) zeolite when H2O/KOH exceeds 4 and dense, anhydrous megakalsilite when H2O/KOH is lower. Solid phase products and precursor liquids were fully characterized using XRD, SEM, NMR, TGA, and ICP analysis. Phase selectivity is discussed in terms of cation hydration as the mechanism, allowing a spatial cation arrangement enabling the formation of pores. Under water deficient conditions, the entropic penalty of cation hydration in the solid is large and cations need to be entirely coordinated by framework oxygens, leading to dense, anhydrous networks. Hence, the water activity in the synthesis medium and the affinity of a cation to either coordinate to water or to aluminosilicate decides whether a porous, hydrated, or a dense, anhydrous framework is formed.

18.
Mater Horiz ; 10(9): 3702-3711, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37401863

RESUMEN

Upon liquid phase adsorption of C1-C5 primary alcohols on high silica MFI zeolites (Si/Al = 11.5-140), the concentration of adsorbed molecules largely exceeds the concentration of traditional adsorption sites: Brønsted acid and defect sites. Combining quantitative in situ1H MAS NMR, qualitative multinuclear NMR and IR spectroscopy, hydrogen bonding of the alcohol function to oxygen atoms of the zeolite siloxane bridges (Si-O-Si) was shown to drive the additional adsorption. This mechanism co-exists with chemi- and physi-sorption on Brønsted acid and defect sites and does not exclude cooperative effects from dispersive interactions.

19.
ACS Appl Mater Interfaces ; 15(29): 35092-35106, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462114

RESUMEN

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

20.
RSC Adv ; 12(13): 7830-7834, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424734

RESUMEN

Mixing dry carbomer powder with water using magneto-hydrodynamic mixing yielded carbomer dispersions with higher viscosity and increased storage modulus as compared to conventional high shear mixing. 1H NMR spectroscopy demonstrated this to be induced by a different water distribution, accompanied by lower ionization and higher degradation of the polymer in case of high shear mixing. This investigation reveals 1H MAS NMR to provide suitable sensitivity and resolution to detect structural changes induced in organic polymers during their hydration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA