Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
Nanotechnology ; 28(38): 385701, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28691926

RESUMEN

This article focuses on the microscopic mechanism of thermally induced nanoweld formation between silver nanowires (AgNWs) which is a key process for improving electrical conductivity in NW networks employed for transparent electrodes. Focused ion beam sectioning and transmission electron microscopy were applied in order to elucidate the atomic structure of a welded NW including measurement of the wetting contact angle and characterization of defect structure with atomic accuracy, which provides fundamental information on the welding mechanism. Crystal lattice strain, obtained by direct evaluation of atomic column displacements in high resolution scanning transmission electron microscopy images, was shown to be non-uniform among the five twin segments of the AgNW pentagonal structure. It was found that the pentagonal cross-sectional morphology of AgNWs has a dominant effect on the formation of nanowelds by controlling initial wetting as well as diffusion of Ag atoms between the NWs. Due to complete solid-state wetting, at an angle of ∼4.8°, the welding process starts with homoepitaxial nucleation of an initial Ag layer on (100) surface facets, considered to have an infinitely large radius of curvature. However, the strong driving force for this process due to the Gibbs-Thomson effect, requires the NW contact to occur through the corner of the pentagonal cross-section of the second NW providing a small radius of curvature. After the initial layer is formed, the welded zone continues to grow and extends out epitaxially to the neighboring twin segments.

3.
Dalton Trans ; 50(43): 15669-15678, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34676859

RESUMEN

We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C@CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g-1 at 1 A g-1 with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg-1 at a power density of 0.1 kW kg-1, which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.

4.
ACS Appl Mater Interfaces ; 12(29): 33058-33068, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32602695

RESUMEN

The controllable synthesis of rutile TiO2 single crystal particles with the preferential orientation of {111} facets still remains a scientific and technological challenge. Here, we developed a facile route for fabrication of rutile TiO2 nanorod crystals (RTiO2NRs) having high ratios of oxidative {111} to reductive {110} surfaces. RTiO2NRs were synthesized using a peroxo-titanium complex (PTC) approach, which was controlled by changing the Ti/H2O2 ratio. The thus obtained RTiO2NRs revealed a high tendency to agglomerate through orientation-dependent attachment along the {110} facets. This resulted in an increased {111}/{110} surface ratio and led to a markedly improved photocatalytic activity of RTiO2NR aggregates. The reported findings illustrate the rich potential of the herein proposed facile and energy-efficient synthesis of nanostructured rutile TiO2-based photocatalysts.

5.
Adv Mater ; 31(8): e1806516, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30633825

RESUMEN

Mesoscale-structured materials offer broad opportunities in extremely diverse applications owing to their high surface areas, tunable surface energy, and large pore volume. These benefits may improve the performance of materials in terms of carrier density, charge transport, and stability. Although metal oxides-based mesoscale-structured materials, such as TiO2 , predominantly hold the record efficiency in perovskite solar cells, high temperatures (above 400 °C) and limited materials choices still challenge the community. A novel route to fabricate organic-based mesoscale-structured interfaces (OMI) for perovskite solar cells using a low-temperature and green solvent-based process is presented here. The efficient infiltration of organic porous structures based on crystalline nanoparticles allows engineering efficient "n-i-p" and "p-i-n" perovskite solar cells with enhanced thermal stability, good performance, and excellent lateral homogeneity. The results show that this method is universal for multiple organic electronic materials, which opens the door to transform a wide variety of organic-based semiconductors into scalable n- or p-type porous interfaces for diverse advanced applications.

6.
Nat Commun ; 6: 7730, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26177808

RESUMEN

The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

7.
ACS Nano ; 7(12): 10747-51, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24237264

RESUMEN

Existing models for the crystal structure of indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) conflict with electron microscopy data. We propose a model based on imaging and spectroscopy of IZO and IFZO nanowires and verify it using density functional theory. The model features a {121 [symbol: see text]} "zigzag" layer, which is an inversion domain boundary containing 5-coordinate indium and/or iron atoms. Higher [symbol: see text] values are observed for greater proportion of iron. We suggest a mechanism of formation in which the basal inclusion and the zigzag diffuse inward together from the surface of the nanowire.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA