RESUMEN
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA.
Asunto(s)
Reordenamiento Génico , Genómica , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Serina Endopeptidasas/genética , Transactivadores/genética , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Regulador Transcripcional ERGRESUMEN
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.