Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755661

RESUMEN

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Asunto(s)
Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 2 de la Rapamicina , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteína Asociada al mTOR Insensible a la Rapamicina , Humanos , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Resistencia a Antineoplásicos/genética , Ratones , Animales , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Mutación , Regulación hacia Abajo , Proteómica/métodos
2.
Nature ; 563(7731): 354-359, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356218

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits spontaneous cyclization of α-amino-ß-carboxymuconate-ε-semialdehyde in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionarily conserved mechanism in Caenorhabditis elegans and mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and sirtuin 1 activity, ultimately enhancing mitochondrial function. We also characterize two potent and selective inhibitors of ACMSD. Because expression of ACMSD is largely restricted to kidney and liver, these inhibitors may have therapeutic potential for protection of these tissues from injury. In summary, we identify ACMSD as a key modulator of cellular NAD+ levels, sirtuin activity and mitochondrial homeostasis in kidney and liver.


Asunto(s)
Carboxiliasas/metabolismo , Secuencia Conservada , Evolución Molecular , Salud , Mitocondrias/fisiología , NAD/biosíntesis , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/deficiencia , Línea Celular , Colina , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Longevidad/efectos de los fármacos , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratas , Sirtuinas/metabolismo
3.
J Biol Chem ; 298(3): 101669, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120922

RESUMEN

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Asunto(s)
Citocinas , Nicotinamida Fosforribosiltransferasa , Receptor Toll-Like 4 , Citocinas/genética , Citocinas/metabolismo , Humanos , NAD/metabolismo , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Unión Proteica , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770640

RESUMEN

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Asunto(s)
NAD , Niacina , Humanos , NAD/metabolismo , Línea Celular Tumoral , Pentosiltransferasa , Nicotinamida Fosforribosiltransferasa , Citocinas/metabolismo , Niacina/farmacología
5.
J Struct Biol ; 214(4): 107917, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332744

RESUMEN

Nicotinamide-adenine dinucleotide (NAD) is centrally important to metabolic reactions that involve redox chemistry. In bacteria, NAD biosynthesis is controlled by different transcription factors, depending on the species. Among the four regulators identified so far, the protein NadQ is reported to act as a repressor of the de novo NAD biosynthetic pathway in proteobacteria. Using comparative genomics, a systematic reconstruction of NadQ regulons in thousands of fully sequenced bacterial genomes has been performed, confirming that NadQ is present in α-proteobacteria and some ß- and γ-proteobacteria, including pathogens like Bordetella pertussis and Neisseria meningitidis, where it likely controls de novo NAD biosynthesis. Through mobility shift assay and mutagenesis, the DNA binding activity of NadQ from Agrobacterium tumefaciens was experimentally validated and determined to be suppressed by ATP. The crystal structures of NadQ in native form and in complex with ATP were determined, indicating that NadQ is a dimer, with each monomer composed of an N-terminal Nudix domain hosting the effector binding site and a C-terminal winged helix-turn-helix domain that binds DNA. Within the dimer, we found one ATP molecule bound, at saturating concentration of the ligand, in keeping with an intrinsic asymmetry of the quaternary structure. Overall, this study provided the basis for depicting a working model of NadQ regulation mechanism.


Asunto(s)
Bacterias , NAD , Adenosina Trifosfato
6.
IUBMB Life ; 74(7): 562-572, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34866305

RESUMEN

The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment-specific manner. Each isoform supplies NAD to specific NAD-dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/química , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Isoformas de Proteínas/metabolismo
7.
Cell Mol Life Sci ; 78(7): 3317-3331, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33755743

RESUMEN

Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Enfermedad , Metaboloma , NAD/metabolismo , Pentosiltransferasa/metabolismo , Pirofosfatasas/metabolismo , Animales , Humanos , Transducción de Señal
8.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199271

RESUMEN

Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.


Asunto(s)
Amidohidrolasas/genética , Técnicas Biosensibles , Mutación/genética , Mononucleótido de Nicotinamida/metabolismo , Estabilidad de Enzimas , Cinética , Mononucleótido de Nicotinamida/química , Multimerización de Proteína , Espectrometría de Fluorescencia , Temperatura , Triptófano/metabolismo
9.
J Bacteriol ; 202(10)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32152217

RESUMEN

Diadenosine tetraphosphate (Ap4A) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. Ap4A is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases. Here, considering evidence that the recombinant protein YqeK from Staphylococcus aureus copurified with ADP, and aided by thermal shift and kinetic analyses, we identified the YqeK family of proteins (COG1713) as an unprecedented class of symmetrically cleaving Ap4A hydrolases. We validated the functional assignment by confirming the ability of YqeK to affect in vivo levels of Ap4A in B. subtilis YqeK shows a catalytic efficiency toward Ap4A similar to that of the symmetrically cleaving Ap4A hydrolases of the known ApaH family, although it displays a distinct fold that is typical of proteins of the HD domain superfamily harboring a diiron cluster. Analysis of the available 3D structures of three members of the YqeK family provided hints to the mode of substrate binding. Phylogenetic analysis revealed the occurrence of YqeK proteins in a consistent group of Gram-positive bacteria that lack ApaH enzymes. Comparative genomics highlighted that yqeK and apaH genes share a similar genomic context, where they are frequently found in operons involved in integrated responses to stress signals.IMPORTANCE Elevation of Ap4A level in bacteria is associated with increased sensitivity to heat and oxidative stress, reduced antibiotic tolerance, and decreased pathogenicity. ApaH is the major Ap4A hydrolase in gamma- and betaproteobacteria and has been recently proposed as a novel target to weaken the bacterial resistance to antibiotics. Here, we identified the orphan YqeK protein family (COG1713) as a highly efficient Ap4A hydrolase family, with members distributed in a consistent group of bacterial species that lack the ApaH enzyme. Among them are the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Mycoplasma pneumoniae By identifying the player contributing to Ap4A homeostasis in these bacteria, we disclose a novel target to develop innovative antibacterial strategies.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/enzimología , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/genética , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Clonación Molecular , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Cinética , Familia de Multigenes , Filogenia , Alineación de Secuencia , Staphylococcus aureus/química , Staphylococcus aureus/genética
10.
FASEB J ; 33(3): 3704-3717, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30514106

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.


Asunto(s)
Citocinas/metabolismo , NADP/metabolismo , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Sirtuinas/metabolismo , Línea Celular , Línea Celular Tumoral , Doxorrubicina/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Peróxido de Hidrógeno/farmacología , Células MCF-7 , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
11.
Blood ; 125(1): 111-23, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25368373

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in nicotinamide adenine dinucleotide biosynthesis. In the extracellular compartment, it exhibits cytokine-/adipokinelike properties, suggesting that it stands at the crossroad between metabolism and inflammation. Here we show that both intracellular and extracellular NAMPT levels are increased in cells and plasma of chronic lymphocytic leukemia (CLL) patients. The extracellular form (eNAMPT) is produced by CLL lymphocytes upon B-cell receptor, Toll-like receptor, and nuclear factor κB (NF-κB) signaling pathway activation. eNAMPT is important for differentiation of resting monocytes, polarizing them toward tumor-supporting M2 macrophages. These cells express high levels of CD163, CD206, and indoleamine 2,3-dioxygenase and secrete immunosuppressive (interleukin [IL] 10, CC chemokine ligand 18) and tumor-promoting (IL-6, IL-8) cytokines. NAMPT-primed M2 macrophages activate extracellular-regulated kinase 1/2, signal transducer and activator of transcription 3, and NF-κB signaling; promote leukemic cell survival; and reduce T-cell responses. These effects are independent of the enzymatic activity of NAMPT, as inferred from the use of an enzymatically inactive mutant. Overall, these results reveal that eNAMPT is a critical element in the induction of an immunosuppressive and tumor-promoting microenvironment of CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/enzimología , Macrófagos/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Linfocitos B/citología , Donantes de Sangre , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-10/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/citología , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Microscopía Confocal , Monocitos/citología , Mutación , FN-kappa B/metabolismo , Fagocitosis , Receptores de Superficie Celular/metabolismo , Factor de Transcripción STAT3/metabolismo
12.
Biochim Biophys Acta ; 1854(9): 1138-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25770681

RESUMEN

In addition to its role as a redox coenzyme, NAD is a substrate of various enzymes that split the molecule to either catalyze covalent modifications of target proteins or convert NAD into biologically active metabolites. The coenzyme bioavailability may be significantly affected by these reactions, with ensuing major impact on energy metabolism, cell survival, and aging. Moreover, through the activity of the NAD-dependent deacetylating sirtuins, NAD behaves as a beacon molecule that reports the cell metabolic state, and accordingly modulates transcriptional responses and metabolic adaptations. In this view, NAD biosynthesis emerges as a highly regulated process: it enables cells to preserve NAD homeostasis in response to significant NAD-consuming events and it can be modulated by various stimuli to induce, via NAD level changes, suitable NAD-mediated metabolic responses. Here we review the current knowledge on the regulation of mammalian NAD biosynthesis, with focus on the relevant rate-limiting enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Asunto(s)
Señales (Psicología) , NAD/biosíntesis , Animales , Humanos , Nicotinamida Fosforribosiltransferasa/fisiología , Pentosiltransferasa/fisiología , Sirtuinas/fisiología
13.
Yeast ; 33(8): 403-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27121441

RESUMEN

Caciofiore della Sibilla is a speciality ewes' milk cheese traditionally manufactured in a foothill area of the Marche region (Central Italy) with a crude extract of fresh young leaves of Carlina acanthifolia All. subsp. acanthifolia as a coagulating agent. The fungal dynamics and diversity of this speciality cheese were investigated throughout the manufacturing and 20-day ripening process, using a combined PCR-DGGE approach. The fungal biota of a control ewes' milk cheese, manufactured with the same batch of milk coagulated with a commercial animal rennet, was also monitored by PCR-DGGE, in order to investigate the contribution of the peculiar vegetable coagulant to the fungal diversity and dynamics of the cheese. Based on the overall results collected, the raw milk and the dairy environment represented the main sources of fungal contamination, with a marginal or null contribution of thistle rennet to the fungal diversity and dynamics of Caciofiore della Sibilla cheese. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Asteraceae/enzimología , Queso/microbiología , Quimosina/química , Microbiología de Alimentos , Hongos/clasificación , Microbiota , Leche/microbiología , Animales , Asteraceae/microbiología , Supervivencia Celular , ADN de Hongos/genética , Hongos/genética , Hongos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Italia , Extractos Vegetales/química , Hojas de la Planta/enzimología , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa , ARN Ribosómico/genética , Ovinos , Factores de Tiempo
14.
J Biol Chem ; 288(36): 25938-25949, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23880765

RESUMEN

NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Acrilamidas/farmacología , Citocinas/antagonistas & inhibidores , NAD/biosíntesis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Piperidinas/farmacología , 5'-Nucleotidasa/genética , ADP-Ribosil Ciclasa 1/biosíntesis , ADP-Ribosil Ciclasa 1/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Humanos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , NAD/genética , Proteínas de Neoplasias/genética , Neoplasias/enzimología , Neoplasias/genética , Mononucleótido de Nicotinamida/biosíntesis , Mononucleótido de Nicotinamida/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo
15.
Expert Opin Ther Pat ; 34(7): 565-582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861278

RESUMEN

INTRODUCTION: Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED: By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION: Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.


Asunto(s)
Antineoplásicos , Citocinas , Inhibidores Enzimáticos , NAD , Neoplasias , Nicotinamida Fosforribosiltransferasa , Patentes como Asunto , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/enzimología , Animales , NAD/metabolismo , Antineoplásicos/farmacología , Citocinas/metabolismo , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Desarrollo de Medicamentos , Diseño de Fármacos
16.
Biofilm ; 7: 100180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38370152

RESUMEN

Antivirulence agents are considered a promising strategy to treat bacterial infections. Fluoropyrimidines possess antivirulence and antibiofilm activity against Gram-negative bacteria; however, their mechanism of action is yet unknown. Consistent with their known antibiofilm activity, fluoropyrimidines, particularly 5-fluorocytosine (5-FC), impair curli-dependent surface adhesion by Escherichia coli MG1655 via downregulation of curli fimbriae gene transcription. Curli inhibition requires fluoropyrimidine conversion into fluoronucleotides and is not mediated by c-di-GMP or the ymg-rcs envelope stress response axis, previously suggested as the target of fluorouracil antibiofilm activity in E. coli. In contrast, 5-FC hampered the transcription of curli activators RpoS and stimulated the expression of Fis, a curli repressor affected by nucleotide availability. This last observation suggested a possible perturbation of the de novo pyrimidine biosynthesis by 5-FC: indeed, exposure to 5-FC resulted in a ca. 2-fold reduction of UMP intracellular levels while not affecting ATP. Consistently, expression of the de novo pyrimidine biosynthesis genes carB and pyrB was upregulated in the presence of 5-FC. Our results suggest that the antibiofilm activity of fluoropyrimidines is mediated, at least in part, by perturbation of the pyrimidine nucleotide pool. We screened a genome library in search of additional determinants able to counteract the effects of 5-FC. We found that a DNA fragment encoding the unknown protein D8B36_18,480 and the N-terminal domain of the penicillin-binding protein 1b (PBP1b), involved in peptidoglycan synthesis, could restore curli production in the presence of 5-FC. Deletion of the PBP1b-encoding gene mrcB, induced csgBAC transcription, while overexpression of the gene encoding the D8B36_18,480 protein obliterated its expression, possibly as part of a coordinated response in curli regulation with PBP1b. While the two proteins do not appear to be direct targets of 5-FC, their involvement in curli regulation suggests a connection between peptidoglycan biosynthesis and curli production, which might become even more relevant upon pyrimidine starvation and reduced availability of UDP-sugars needed in cell wall biosynthesis. Overall, our findings link the antibiofilm activity of fluoropyrimidines to the redirection of at least two global regulators (RpoS, Fis) by induction of pyrimidine starvation. This highlights the importance of the de novo pyrimidines biosynthesis pathway in controlling virulence mechanisms in different bacteria and makes the pathway a potential target for antivirulence strategies.

17.
Appl Microbiol Biotechnol ; 97(16): 7325-36, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23584245

RESUMEN

In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiological assays developed in an Escherichia coli strain expressing the wspR gene. We found that azathioprine, an immunosuppressive drug used in the treatment of Crohn's disease, was able to inhibit WspR-dependent c-di-GMP biosynthesis in bacterial cells. However, in vitro enzymatic assays ruled out direct inhibition of WspR DGC activity either by azathioprine or by its metabolic derivative 2-amino-6-mercapto-purine riboside. Azathioprine is an inhibitor of 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase, an enzyme involved in purine biosynthesis, which suggests that inhibition of c-di-GMP biosynthesis by azathioprine may be due to perturbation of intracellular nucleotide pools. Consistent with this hypothesis, WspR activity is abolished in an E. coli purH mutant strain, unable to produce AICAR transformylase. Despite its effect on WspR, azathioprine failed to prevent biofilm formation by P. aeruginosa; however, it affected production of extracellular structures in E. coli clinical isolates, suggesting efficient inhibition of c-di-GMP biosynthesis in this bacterium. Our results indicate that azathioprine can prevent biofilm formation in E. coli through inhibition of c-di-GMP biosynthesis and suggest that such inhibition might contribute to its anti-inflammatory activity in Crohn's disease.


Asunto(s)
Azatioprina/metabolismo , GMP Cíclico/análogos & derivados , Escherichia coli/efectos de los fármacos , Nucleótidos/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , GMP Cíclico/biosíntesis , Escherichia coli/metabolismo , Escherichia coli/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología
18.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37259338

RESUMEN

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

19.
J Biol Chem ; 286(46): 40365-75, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21953451

RESUMEN

The pyridine nucleotide cycle is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial pyridine nucleotide cycle, was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds of bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in Escherichia coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three-dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and nonfunctional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in the bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.


Asunto(s)
Amidohidrolasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano/fisiología , NAD/genética , Amidohidrolasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , NAD/metabolismo , Homología de Secuencia de Aminoácido , Shewanella/enzimología , Shewanella/genética
20.
Mol Microbiol ; 81(1): 219-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21542866

RESUMEN

Rrp1 is the sole c-di-GMP-producing protein (diguanylate cyclase) of Borrelia burgdorferi. To test the hypothesis that Rrp1 regulates critical processes involved in the transmission of spirochetes between ticks and mammals, an rrp1 deletion mutant (B31-Δrrp1) and a strain that constitutively produces elevated levels of Rrp1 (B31-OV) were constructed. The strains were assessed for progression through the enzootic cycle using an Ixodes tick/C3H-HeJ mouse model and tick immersion feeding methods. B31-Δrrp1 infected mice as efficiently as wild type but had altered motility, decreased chemotactic responses to N-acetylglucosamine (NAG) and attenuated ability to disseminate or colonize distal organs. While this strain infected mice, it was not able to survive in ticks. In contrast, B31-OV displayed normal motility patterns and chemotactic responses but was non-infectious in mice. Using immersion feeding techniques, we demonstrate that B31-OV can establish a population in ticks and survive exposure to a natural bloodmeal. The results presented here indicate Rrp1, and by extension, c-di-GMP, are not strictly required for murine infection, but are required for the successful establishment of a productive population of B. burgdorferi in ticks. These analyses provide significant new insight into the genetic regulatory mechanisms of the Lyme disease spirochetes.


Asunto(s)
Borrelia burgdorferi/enzimología , Borrelia burgdorferi/patogenicidad , Proteínas de Escherichia coli/metabolismo , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Liasas de Fósforo-Oxígeno/metabolismo , Factores de Virulencia/metabolismo , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Quimiotaxis , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Locomoción , Ratones , Ratones Endogámicos C3H , Viabilidad Microbiana , Liasas de Fósforo-Oxígeno/genética , Enfermedades de los Roedores/microbiología , Virulencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA