RESUMEN
BACKGROUND: Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS: TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS: At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS: Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.
Asunto(s)
Recien Nacido Prematuro , Serotonina , Lactante , Humanos , Recién Nacido , Serotonina/metabolismo , Estudios Prospectivos , Ácido Hidroxiindolacético , Ácido Quinurénico , Hipoxia , Triptófano , Biomarcadores , NeurotransmisoresRESUMEN
INTRODUCTION: Hyaluronan (HA) is a major component of the extracellular matrix. Increased pulmonary HA concentrations are associated with several respiratory disorders and is a pathophysiological feature of lung disease. We investigated whether elevated urine HA is a biomarker of an unfavorable 40-week respiratory outcome in preterm infants. METHODS: Infants comprised a cohort of preterm neonates <31 weeks gestational age (GA) from the Prematurity-Related Ventilatory Control (Pre-Vent) multicenter study. HA was quantified in urine obtained at 1 week and 1 month of age. Respiratory status at 40 weeks post-menstrual age (PMA) was classified as unfavorable [either (1) deceased at or before 40 weeks PMA, (2) an inpatient on respiratory medication, O2 or other respiratory support at 40 weeks, or (3) discharged prior to 40 weeks on medications/O2/other respiratory support], or favorable (alive and previously discharged, or inpatient and off respiratory medications, off O2, and off other respiratory support at 40 weeks PMA). The association between urine HA and the unfavorable 40 week PMA outcome was examined using a multivariate logistic generalized estimation equation model. RESULTS: Infants with higher HA at 1 week (but not 1 month) showed increased odds of unfavorable respiratory outcome at 40 weeks PMA (OR [95% CI] = 1.87 per 0.01 mg [1.27, 2.73]). DISCUSSION AND CONCLUSION: Neonatal urine screening for HA could identify infants at risk for death or need for respiratory support at term-corrected age (40 weeks PMA). The relationship between elevated HA at 1 week and an unfavorable 40 week outcome was stronger in infants with lower GA.