Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779913

RESUMEN

Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.


Asunto(s)
Sistema Nervioso Entérico , Ratones , Animales , Cresta Neural/metabolismo , Transcriptoma , Movimiento Celular/fisiología , Intestinos
2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982286

RESUMEN

Neurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons. Bone marrow receives sensory and sympathetic innervation from the peripheral nervous system and is known to contain myelinating and unmyelinating Schwann cells. Herein, we describe a population of neural crest-derived Schwann cells residing in a neurovascular niche of bone marrow in association with nerve fibers. These Schwann cells can be isolated and expanded. They demonstrate plasticity in vitro, generating neural stem cells that exhibit neurogenic potential and form neural networks within the enteric nervous system in vivo following transplantation to the intestine. These cells represent a novel source of autologous neural stem cells for the treatment of neurointestinal disorders.


Asunto(s)
Células Endoteliales , Células-Madre Neurales , Femenino , Embarazo , Humanos , Neurogénesis/fisiología , Diferenciación Celular/fisiología , Células de Schwann/fisiología , Células de la Médula Ósea , Cresta Neural
3.
Stem Cells ; 39(9): 1236-1252, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938072

RESUMEN

Interplay between embryonic enteric neural stem cells (ENSCs) and enteric mesenchymal cells (EMCs) in the embryonic gut is essential for normal development of the enteric nervous system. Disruption of these interactions underlies the pathogenesis of intestinal aganglionosis in Hirschsprung disease (HSCR). ENSC therapy has been proposed as a possible treatment for HSCR, but whether the survival and development of postnatal-derived ENSCs similarly rely on signals from the mesenchymal environment is unknown and has important implications for developing protocols to expand ENSCs for cell transplantation therapy. Enteric neural crest-derived cells (ENCDCs) and EMCs were cultured from the small intestine of Wnt1-Rosa26-tdTomato mice. EMCs promoted the expansion of ENCDCs 9.5-fold by inducing ENSC properties, including expression of Nes, Sox10, Sox2, and Ngfr. EMCs enhanced the neurosphere-forming ability of ENCDCs, and this persisted after withdrawal of the EMCs. These effects were mediated by paracrine factors and several ligands known to support neural stem cells were identified in EMCs. Using the optimized expansion procedures, neurospheres were generated from small intestine of the Ednrb-/- mouse model of HSCR. These ENSCs had similar proliferative and migratory capacity to Ednrb+/+ ENSCs, albeit neurospheres contained fewer neurons. ENSCs derived from Ednrb-/- mice generated functional neurons with similar calcium responses to Ednrb+/+ ENSCs and survived after transplantation into the aganglionic colon of Ednrb-/- recipients. EMCs act as supporting cells to ENSCs postnatally via an array of synergistically acting paracrine signaling factors. These properties can be leveraged to expand autologous ENSCs from patients with HSCR mutations for therapeutic application.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Células-Madre Neurales , Animales , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/terapia , Humanos , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo
4.
Child Psychiatry Hum Dev ; 53(2): 300-306, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33534034

RESUMEN

Recent studies have attempted to measure several biomarkers to understand the complex interactions of the anatomic systems that may be involved in autism spectrum disorder (ASD). In CNS, galanin takes part in a variety of pathological and physiological processes. Prior research has indicated it is involved in several neuropsychiatric disorders and has a role in inhibiting the neuronal firing and release of serotonin, norepinephrine, and acetylcholine. To date, serum galanin levels have not been investigated in the context of ASD. This study aimed, therefore, to compare the serum galanin levels of children with ASD and healthy controls and to reveal any association between galanin level and the severity of ASD, as well as other psychological and demographic parameters. Serum galanin levels were measured by radioimmunoassay in 116 children with ASD and 98 healthy children. We observed significantly increased serum concentrations of galanin in children with ASD relative to healthy children. Moreover, children with severe ASD had significantly higher galanin levels than those with less severe disease. We also confirmed significant positive correlations between galanin and psychiatric parameters in children with ASD. For the first time, we suggest a possible correlation between serum galanin and the degree of ASD severity. Increased galanin levels may play a role in the pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista , Biomarcadores , Niño , Galanina , Humanos
5.
Pflugers Arch ; 473(1): 107-120, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074398

RESUMEN

Oxaliplatin is a platinum-based alkylating chemotherapeutic agent used for cancer treatment. Neurotoxicity is one of its major adverse effects that often demands dose limitation. However, the effects of chronic oxaliplatin on the toxicity of the autonomic nervous system regulating cardiorespiratory function and adaptive reflexes are unknown. Male Sprague Dawley rats were treated with intraperitoneal oxaliplatin (3 mg kg-1 per dose) 3 times a week for 14 days. The effects of chronic oxaliplatin treatment on baseline mean arterial pressure (MAP); heart rate (HR); splanchnic sympathetic nerve activity (sSNA); phrenic nerve activity (PNA) and its amplitude (PNamp) and frequency (PNf); and sympathetic reflexes were investigated in anaesthetised, vagotomised and artificially ventilated rats. The same parameters were evaluated after acute oxaliplatin injection, and in the chronic treatment group following a single dose of oxaliplatin. The amount of platinum in the brain was determined with atomic absorption spectrophotometry. Chronic oxaliplatin treatment significantly increased MAP, sSNA and PNf and decreased HR and PNamp, while acute oxaliplatin had no effects. Platinum was accumulated in the brain after chronic oxaliplatin treatment. In the chronic oxaliplatin treatment group, further administration of a single dose of oxaliplatin increased MAP and sSNA. The baroreceptor sensitivity and somatosympathetic reflex were attenuated at rest while the sympathoexcitatory response to hypercapnia was increased in the chronic treatment group. This is the first study to reveal oxaliplatin-induced alterations in the central regulation of cardiovascular and respiratory functions as well as reflexes that may lead to hypertension and breathing disorders which may be mediated via accumulated platinum in the brain.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Oxaliplatino/efectos adversos , Oxaliplatino/farmacocinética , Platino (Metal)/metabolismo , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Barorreflejo/efectos de los fármacos , Sangre/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Esquema de Medicación , Frecuencia Cardíaca , Masculino , Oxaliplatino/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Nervios Esplácnicos/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Distribución Tisular
6.
J Child Psychol Psychiatry ; 59(1): 20-29, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27868194

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a frequent developmental disorder characterized by pervasive deficits in social interaction, impairment in verbal and nonverbal communication, and stereotyped patterns of interests and activities. It has been previously reported that there is vitamin D deficiency in autistic children; however, there is a lack of randomized controlled trials of vitamin D supplementation in ASD children. METHODS: This study is a double-blinded, randomized clinical trial (RCT) that was conducted on 109 children with ASD (85 boys and 24 girls; aged 3-10 years). The aim of this study was to assess the effects of vitamin D supplementation on the core symptoms of autism in children. ASD patients were randomized to receive vitamin D3 or placebo for 4 months. The serum levels of 25-hydroxycholecalciferol (25 (OH)D) were measured at the beginning and at the end of the study. The autism severity and social maturity of the children were assessed by the Childhood Autism Rating Scale (CARS), Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and the Autism Treatment Evaluation Checklist (ATEC). TRIAL REGISTRATION NUMBER: UMIN-CTR Study Design: trial number: UMIN000020281. RESULTS: Supplementation of vitamin D was well tolerated by the ASD children. The daily doses used in the therapy group was 300 IU vitamin D3/kg/day, not to exceed 5,000 IU/day. The autism symptoms of the children improved significantly, following 4-month vitamin D3 supplementation, but not in the placebo group. This study demonstrates the efficacy and tolerability of high doses of vitamin D3 in children with ASD. CONCLUSIONS: This study is the first double-blinded RCT proving the efficacy of vitamin D3 in ASD patients. Depending on the parameters measured in the study, oral vitamin D supplementation may safely improve signs and symptoms of ASD and could be recommended for children with ASD. At this stage, this study is a single RCT with a small number of patients, and a great deal of additional wide-scale studies are needed to critically validate the efficacy of vitamin D in ASD.


Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/tratamiento farmacológico , Suplementos Dietéticos , Vitamina D/sangre , Vitamina D/uso terapéutico , Niño , Preescolar , Método Doble Ciego , Femenino , Humanos , Masculino
7.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G85-G102, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881401

RESUMEN

The Winnie mouse, carrying a missense mutation in Muc2, is a model for chronic intestinal inflammation demonstrating symptoms closely resembling inflammatory bowel disease (IBD). Alterations to the immune environment, morphological structure, and innervation of Winnie mouse colon have been identified; however, analyses of intestinal transit and colonic functions have not been conducted. In this study, we investigated in vivo intestinal transit in radiographic studies and in vitro motility of the isolated colon in organ bath experiments. We compared neuromuscular transmission using conventional intracellular recording between distal colon of Winnie and C57BL/6 mice and smooth muscle contractions using force displacement transducers. Chronic inflammation in Winnie mice was confirmed by detection of lipocalin-2 in fecal samples over 4 wk and gross morphological damage to the colon. Colonic transit was faster in Winnie mice. Motility was altered including decreased frequency and increased speed of colonic migrating motor complexes and increased occurrence of short and fragmented contractions. The mechanisms underlying colon dysfunctions in Winnie mice included inhibition of excitatory and fast inhibitory junction potentials, diminished smooth muscle responses to cholinergic and nitrergic stimulation, and increased number of α-smooth muscle actin-immunoreactive cells. We conclude that diminished excitatory responses occur both prejunctionally and postjunctionally and reduced inhibitory purinergic responses are potentially a prejunctional event, while diminished nitrergic inhibitory responses are probably due to a postjunction mechanism in the Winnie mouse colon. Many of these changes are similar to disturbed motor functions in IBD patients indicating that the Winnie mouse is a model highly representative of human IBD. NEW & NOTEWORTHY: This is the first study to provide analyses of intestinal transit and whole colon motility in an animal model of spontaneous chronic colitis. We found that cholinergic and purinergic neuromuscular transmission, as well as the smooth muscle cell responses to cholinergic and nitrergic stimulation, is altered in the chronically inflamed Winnie mouse colon. The changes to intestinal transit and colonic function we identified in the Winnie mouse are similar to those seen in inflammatory bowel disease patients.


Asunto(s)
Colitis/fisiopatología , Colon/fisiopatología , Motilidad Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Contracción Muscular/fisiología , Transmisión Sináptica/fisiología , Animales , Colitis/genética , Modelos Animales de Enfermedad , Heces/química , Femenino , Inflamación/genética , Inflamación/fisiopatología , Lipocalina 2/análisis , Masculino , Ratones , Mucina 2/genética , Músculo Liso/fisiopatología , Mutación Missense
8.
Cell Tissue Res ; 366(2): 285-299, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27477670

RESUMEN

Rectal prolapse is associated with diminished anal sensitivity and rectal motor activity. Both sensory and motor functions are controlled by the extrinsic and intrinsic (enteric nervous system) innervation of the gastrointestinal tract. Studies of changes in intestinal innervation in humans and in animal models with rectal prolapse are extremely scarce. The Winnie mouse model of spontaneous chronic colitis closely represents human inflammatory bowel disease and is prone to develop rectal prolapse. We have investigated changes in the myenteric and inhibitory motor neurons and evaluated changes in the density of sensory afferent, sympathetic, and parasympathetic fibers in the rectal colon of Winnie mice with and without rectal prolapse. Our results demonstrate that rectal prolapse in Winnie mice with chronic colitis is correlated with enhanced levels of inflammation, gross morphological damage, and muscular hypertrophy of the rectum. Animals with prolapse have more severe damage to the rectal innervation compared with Winnie mice without prolapse. This includes more severe neuronal loss in the myenteric plexus, involving a decrease in nNOS-immunoreactive neurons (not observed in Winnie mice without prolapse) and a more pronounced loss of VAChT-immunoreactive fibers. Both Winnie mice with and without prolapse have comparable levels of noradrenergic and sensory fiber loss in the rectum. This is the first study providing evidence that the damage and death of enteric neurons, including nitrergic neurons in myenteric ganglia and the loss of cholinergic nerve fibers, are important factors in structural changes in the rectum of mice with rectal prolapse.


Asunto(s)
Colitis/complicaciones , Colitis/patología , Prolapso Rectal/complicaciones , Prolapso Rectal/patología , Recto/inervación , Recto/patología , Animales , Recuento de Células , Femenino , Inflamación/patología , Leucocitos/patología , Masculino , Ratones Endogámicos C57BL , Fibras Nerviosas/patología , Neuronas/patología
9.
Nutr Neurosci ; 19(8): 346-351, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25876214

RESUMEN

OBJECTIVES: Autism spectrum disorder (ASD) is a developmental disorder characterized by pervasive deficits in social interaction, impairment in verbal and non-verbal communication, and stereotyped patterns of interests and activities. Vitamin-D deficiency was previously reported in autistic children. However, the data on the relationship between vitamin D deficiency and the severity of autism are limited. METHODS: We performed a case-controlled cross-sectional analysis conducted on 122 ASD children, to assess their vitamin D status compared to controls and the relationship between vitamin D deficiency and the severity of autism. We also conducted an open trial of vitamin D supplementation in ASD children. RESULTS: Fifty-seven percent of the patients in the present study had vitamin D deficiency, and 30% had vitamin D insufficiency. The mean 25-OHD levels in patients with severe autism were significantly lower than those in patients with mild/moderate autism. Serum 25-OHD levels had significant negative correlations with Childhood Autism Rating Scale (CARS) scores. Of the ASD group, 106 patients with low-serum 25-OHD levels (<30 ng/ml) participated in the open label trial. They received vitamin D3 (300 IU/kg/day not to exceed 5000 IU/day) for 3 months. Eighty-three subjects completed 3 months of daily vitamin D treatment. Collectively, 80.72% (67/83) of subjects who received vitamin D3 treatment had significantly improved outcome, which was mainly in the sections of the CARS and aberrant behavior checklist subscales that measure behavior, stereotypy, eye contact, and attention span. CONCLUSION: Vitamin D is inexpensive, readily available and safe. It may have beneficial effects in ASD subjects, especially when the final serum level is more than 40 ng/ml. TRIAL REGISTRATION NUMBER: UMIN-CTR Study Design: trial Number: R000016846.


Asunto(s)
Trastorno del Espectro Autista/dietoterapia , Fenómenos Fisiológicos Nutricionales Infantiles , Colecalciferol/uso terapéutico , Suplementos Dietéticos , Estado Nutricional , Deficiencia de Vitamina D/dietoterapia , Atención , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/fisiopatología , Calcifediol/sangre , Estudios de Casos y Controles , Niño , Preescolar , Colecalciferol/metabolismo , Estudios Transversales , Egipto/epidemiología , Movimientos Oculares , Humanos , Hipercinesia/etiología , Hipercinesia/prevención & control , Masculino , Cooperación del Paciente , Escalas de Valoración Psiquiátrica , Índice de Severidad de la Enfermedad , Conducta Social , Trastorno de Movimiento Estereotipado/etiología , Trastorno de Movimiento Estereotipado/prevención & control , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología
10.
Cell Tissue Res ; 362(3): 497-512, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26227258

RESUMEN

The gastrointestinal tract is innervated by extrinsic sympathetic, parasympathetic and sensory nerve fibers as well as by intrinsic fibers from the neurons in myenteric and submucosal ganglia embedded into the gastrointestinal wall. Morphological and functional studies of intestinal innervation in animal models are important for understanding the pathophysiology of inflammatory bowel disease (IBD). The recently established Winnie mouse model of spontaneous chronic colitis caused by a point mutation in the Muc2 mucin gene develops inflammation due to a primary epithelial defect. Winnie mice display symptoms of diarrhea, ulcerations and rectal bleeding similar to those in IBD. In this study, we investigated myenteric neurons, noradrenergic, cholinergic and sensory nerve fibers in the distal colon of Winnie (Win/Win) mice compared to C57/BL6 and heterozygote littermates (Win/Wt) using histological and immunohistochemical methods. All Win/Win mice used in this study had inflammation with signs of mucosal damage, goblet cell loss, thickening of muscle and mucosal layers, and increased CD45-immunoreactivity in the distal colon. The density of sensory, cholinergic and noradrenergic fibers innervating the myenteric plexus, muscle and mucosa significantly decreased in the distal colon of Win/Win mice compared to C57/BL6 and Win/Wt mice, while the total number of myenteric neurons as well as subpopulations of cholinergic and nitrergic neurons remained unchanged. In conclusion, changes in the colon morphology and innervation found in Winnie mice have multiple similarities with changes observed in patients with ulcerative colitis.


Asunto(s)
Colitis/patología , Colon/inervación , Animales , Recuento de Células , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Enfermedad Crónica , Colitis/complicaciones , Colon/patología , Modelos Animales de Enfermedad , Ganglios/metabolismo , Ganglios/patología , Inmunohistoquímica , Inflamación/complicaciones , Inflamación/patología , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 17(6): 907-921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38272444

RESUMEN

BACKGROUND & AIMS: Intestinal inflammation is associated with loss of enteric cholinergic neurons. Given the systemic anti-inflammatory role of cholinergic innervation, we hypothesized that enteric cholinergic neurons similarly possess anti-inflammatory properties and may represent a novel target to treat inflammatory bowel disease. METHODS: Mice were fed 2.5% dextran sodium sulfate (DSS) for 7 days to induce colitis. Cholinergic enteric neurons, which express choline acetyltransferase (ChAT), were focally ablated in the midcolon of ChAT::Cre;R26-iDTR mice by local injection of diphtheria toxin before colitis induction. Activation of enteric cholinergic neurons was achieved using ChAT::Cre;R26-ChR2 mice, in which ChAT+ neurons express channelrhodopsin-2, with daily blue light stimulation delivered via an intracolonic probe during the 7 days of DSS treatment. Colitis severity, ENS structure, and smooth muscle contractility were assessed by histology, immunohistochemistry, quantitative polymerase chain reaction, organ bath, and electromyography. In vitro studies assessed the anti-inflammatory role of enteric cholinergic neurons on cultured muscularis macrophages. RESULTS: Ablation of ChAT+ neurons in DSS-treated mice exacerbated colitis, as measured by weight loss, colon shortening, histologic inflammation, and CD45+ cell infiltration, and led to colonic dysmotility. Conversely, optogenetic activation of enteric cholinergic neurons improved colitis, preserved smooth muscle contractility, protected against loss of cholinergic neurons, and reduced proinflammatory cytokine production. Both acetylcholine and optogenetic cholinergic neuron activation in vitro reduced proinflammatory cytokine expression in lipopolysaccharide-stimulated muscularis macrophages. CONCLUSIONS: These findings show that enteric cholinergic neurons have an anti-inflammatory role in the colon and should be explored as a potential inflammatory bowel disease treatment.


Asunto(s)
Colina O-Acetiltransferasa , Neuronas Colinérgicas , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Optogenética , Animales , Colitis/patología , Colitis/inducido químicamente , Neuronas Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Optogenética/métodos , Ratones , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Sulfato de Dextran/toxicidad , Sistema Nervioso Entérico/patología , Inflamación/patología , Colon/patología , Colon/inervación , Macrófagos/metabolismo , Macrófagos/inmunología , Músculo Liso/patología , Músculo Liso/metabolismo , Masculino
12.
Neuron ; 112(18): 3143-3160.e6, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39019043

RESUMEN

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.


Asunto(s)
Sistema Nervioso Entérico , Neuroglía , Neuronas , Animales , Neuroglía/fisiología , Sistema Nervioso Entérico/fisiología , Sistema Nervioso Entérico/citología , Ratones , Neuronas/fisiología , Intestinos/inervación , Intestinos/fisiología , Regeneración Nerviosa/fisiología , Plexo Mientérico/citología , Plexo Mientérico/fisiología , Ratones Transgénicos , Neuritas/fisiología
13.
Nat Commun ; 15(1): 2479, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509106

RESUMEN

Neurointestinal diseases cause significant morbidity and effective treatments are lacking. This study aimes to test the feasibility of transplanting autologous enteric neural stem cells (ENSCs) to rescue the enteric nervous system (ENS) in a model of colonic aganglionosis. ENSCs are isolated from a segment of small intestine from Wnt1::Cre;R26iDTR mice in which focal colonic aganglionosis is simultaneously created by diphtheria toxin injection. Autologous ENSCs are isolated, expanded, labeled with lentiviral-GFP, and transplanted into the aganglionic segment in vivo. ENSCs differentiate into neurons and glia, cluster to form neo-ganglia, and restore colonic contractile activity as shown by electrical field stimulation and optogenetics. Using a non-lethal model of colonic aganglionosis, our results demonstrate the potential of autologous ENSC therapy to improve functional outcomes in neurointestinal disease, laying the groundwork for clinical application of this regenerative cell-based approach.


Asunto(s)
Neoplasias Colorrectales , Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Células-Madre Neurales , Ratones , Animales , Enfermedad de Hirschsprung/terapia , Trasplante de Células Madre/métodos , Células-Madre Neurales/trasplante , Neuronas
14.
JCI Insight ; 9(17)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042470

RESUMEN

The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia." Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared with that of sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.


Asunto(s)
Modelos Animales de Enfermedad , Sistema Nervioso Entérico , Motilidad Gastrointestinal , Enfermedad de Hirschsprung , Ratones Noqueados , Células-Madre Neurales , Animales , Enfermedad de Hirschsprung/terapia , Enfermedad de Hirschsprung/patología , Células-Madre Neurales/trasplante , Motilidad Gastrointestinal/fisiología , Ratones , Sistema Nervioso Entérico/fisiopatología , Colon/patología , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Trasplante de Células Madre/métodos , Movimiento Celular , Femenino , Humanos , Masculino , Músculo Liso
15.
Inflamm Bowel Dis ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102823

RESUMEN

BACKGROUND: Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation. METHODS: This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis. Findings are validated by immunohistochemistry, flow cytometry and cell-lineage tracing in vivo, and in vitro assays with muscularis macrophages (MMφ). RESULTS: In naïve conditions, transcriptional duality is observed in MMφs with 2 major subpopulations: conventional resident Cx3cr1+ MMφs and Lyve1+ MMφs. The Lyve1+ population is phagocytic and expresses several known MMφ markers in mouse and human, confirming their identity as a bona fide MMφ subset. Single-cell transcriptomics indicate that resident MMφs are retained during colitis and exhibit plasticity toward an inflammatory profile. Lyve1+ MMφs, which express anti-inflammatory marker CD163, are absent during colitis, as confirmed by flow cytometry. In contrast, lineage tracing finds that resident Cx3cr1+ MMφs remain during colitis and are not completely replaced by the inflammatory infiltrating monocytes. In vitro studies provide biological evidence of the plasticity of resident Cx3cr1+ MMφs in response to lipopolysaccharide (LPS), mirroring transcriptional observations in vivo of their inflammatory plasticity. Potential markers for colitic MMφs, validated in animal models and in individuals with ulcerative colitis, are identified. CONCLUSIONS: Our findings contribute to the understanding of the immune system in the muscularis propria niche during colitis by resolving the heterogeneity and origins of colitic MMφs.


Involvement of the muscularis propria accompanies a poorer prognosis in IBD. This study characterizes muscularis macrophage subpopulations during colitis, highlighting the loss of anti-inflammatory LYVE-1+ macrophages and inflammatory plasticity in resident CX3CR1+ macrophages, providing insights into prognostic and therapeutic targets.

16.
Biomolecules ; 13(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36830645

RESUMEN

Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of oxaliplatin treatment on the stomach. In this study, the in vivo effects of oxaliplatin treatment on eating behaviour, stomach content, intrinsic gastric neuronal population, extrinsic innervation to the stomach, levels of mucosal serotonin (5-hydroxytryptamine, 5-HT), and parasympathetic vagal efferent nerve activity were analysed. Chronic systemic oxaliplatin treatment in mice resulted in pica, indicated by increased kaolin consumption and a reduction in body weight. Oxaliplatin treatment significantly increased the stomach weight and content. The total number of myenteric and nitric oxide synthase-immunoreactive neurons as well as the density of sympathetic, parasympathetic, and sensory fibres in the stomach were decreased significantly with oxaliplatin treatment. Oxaliplatin treatment significantly increased the levels in mucosal 5-HT and the number of enterochromaffin-like cells. Chronic oxaliplatin treatment also caused a significant increase in the vagal efferent nerve activity. The findings of this study indicate that oxaliplatin exposure has adverse effects on multiple components of gastric innervation, which could be responsible for pica and gastric dysmotility.


Asunto(s)
Pica , Serotonina , Ratones , Animales , Oxaliplatino/farmacología , Serotonina/farmacología , Estómago , Náusea , Vómitos
17.
J Pharmacol Exp Ther ; 341(1): 213-24, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262923

RESUMEN

The rostral ventrolateral medulla (RVLM) regulates sympathetic vasomotor outflow and reflexes. Intracerebroventricular neuromedin U (NMU) increases sympathetic nerve activity (SNA), mean arterial pressure (MAP), and heart rate (HR), but the central nuclei that mediate these effects are unknown. In urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats (n = 36) the effects of bilateral microinjection of NMU (50 nl, each side) into RVLM on cardiorespiratory variables, somatosympathetic reflex, arterial baroreflex, and chemoreflex were investigated. Microinjection of NMU into RVLM elicited a hypertension, tachycardia, and an increase in splanchnic SNA (SSNA) and lumbar SNA (LSNA) at lower doses (25 and 50 pmol). At higher dose (100 pmol), NMU caused a biphasic response, a brief hypertension and sympathoexcitation followed by prolonged hypotension and sympathoinhibition. The peak excitatory and inhibitory response was found at 100 pmol NMU with an increase in MAP, HR, SSNA, and LSNA of 36 mm Hg, 20 beats per minute, 34%, and 89%, respectively, and a decrease of 33 mm Hg, 25 beats per minute, 42%, and 52%, respectively, from baseline. NMU, in the RVLM, also increased phrenic nerve amplitude and the expiratory period and reduced the inspiratory period. NMU (100 pmol) attenuated the somatosympathetic reflex and the sympathoexcitatory and respiratory responses to hypoxia and hypercapnia. After NMU injection in RVLM, the maximum gain of the SSNA baroreflex function curve was increased, but that of the LSNA was reduced. The present study provides functional evidence for a complex differential modulatory activity of NMU on the cardiovascular and reflex responses that are integrated in the RVLM.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Bulbo Raquídeo/fisiología , Neuropéptidos/administración & dosificación , Mecánica Respiratoria/fisiología , Animales , Masculino , Microinyecciones/métodos , Neuropéptidos/fisiología , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/fisiología
18.
Stem Cells Transl Med ; 11(12): 1232-1244, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36322091

RESUMEN

Cell therapy offers the potential to replace the missing enteric nervous system (ENS) in patients with Hirschsprung disease (HSCR) and to restore gut function. The Schwann cell (SC) lineage has been shown to generate enteric neurons pre- and post-natally. Here, we aimed to isolate SCs from the aganglionic segment of HSCR and to determine their potential to restore motility in the aganglionic colon. Proteolipid protein 1 (PLP1) expressing SCs were isolated from the extrinsic nerve fibers present in the aganglionic segment of postnatal mice and patients with HSCR. Following 7-10 days of in vitro expansion, HSCR-derived SCs were transplanted into the aganglionic mouse colon ex vivo and in vivo. Successful engraftment and neuronal differentiation were confirmed immunohistochemically and calcium activity of transplanted cells was demonstrated by live cell imaging. Organ bath studies revealed the restoration of motor function in the recipient aganglionic smooth muscle. These results show that SCs isolated from the aganglionic segment of HSCR mouse can generate functional neurons within the aganglionic gut environment and restore the neuromuscular activity of recipient mouse colon. We conclude that HSCR-derived SCs represent a potential autologous source of neural progenitor cells for regenerative therapy in HSCR.


Asunto(s)
Enfermedad de Hirschsprung , Células-Madre Neurales , Ratones , Animales , Enfermedad de Hirschsprung/terapia , Enfermedad de Hirschsprung/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/trasplante , Células de Schwann/metabolismo
19.
Sci Transl Med ; 14(646): eabl8753, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35613280

RESUMEN

Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest-derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.


Asunto(s)
Células-Madre Neurales , Células de Schwann , Tejido Adiposo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Neurogénesis , Células de Schwann/metabolismo , Grasa Subcutánea
20.
Inflamm Bowel Dis ; 28(8): 1229-1243, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35380670

RESUMEN

BACKGROUND: The autonomic nervous system (ANS) is thought to play a critical role in the anti-inflammatory reflex pathway in acute colitis via its interaction with the spleen and colon. Inflammation in the intestine is associated with a blunting of vagal signaling and increased sympathetic activity. As a corollary, methods to restore sympatho-vagal balance are being investigated as therapeutic strategies for the treatment of intestinal inflammation. Nevertheless, it is indefinite whether these autonomic signaling adaptations in colitis are detrimental or beneficial to controlling intestinal inflammation. In this study, models of moderate and severe chronic colitis are utilized to resolve the correlations between sympatho-vagal signaling and the severity of intestinal inflammation. METHODS: Spleens and colons were collected from Winnie (moderate colitis), Winnie-Prolapse (severe colitis), and control C57BL/6 mice. Changes to the size and histomorphology of spleens were evaluated. Flow cytometry was used to determine the expression of adrenergic and cholinergic signaling proteins in splenic B and T lymphocytes. The inflammatory profile of the spleen and colon was determined using a RT-PCR gene array. Blood pressure, heart rate, splanchnic sympathetic nerve and vagus nerve activity were recorded. RESULTS: Spleens and colons from Winnie and Winnie-Prolapse mice exhibited gross abnormalities by histopathology. Genes associated with a pro-inflammatory response were upregulated in the colons from Winnie and further augmented in colons from Winnie-Prolapse mice. Conversely, many pro-inflammatory markers were downregulated in the spleens from Winnie-Prolapse mice. Heightened activity of the splanchnic nerve was observed in Winnie but not Winnie-Prolapse mice. Conversely, vagal nerve activity was greater in Winnie-Prolapse mice compared with Winnie mice. Splenic lymphocytes expressing α1 and ß2 adrenoreceptors were reduced, but those expressing α7 nAChR and producing acetylcholine were increased in Winnie and Winnie-Prolapse mice. CONCLUSIONS: Sympathetic activity may correlate with an adaptive mechanism to reduce the severity of chronic colitis. The Winnie and Winnie-Prolapse mouse models of moderate and severe chronic colitis are well suited to examine the pathophysiology of progressive chronic intestinal inflammation.


In this study we use mouse models of moderate and severe colitis to resolve the relationship between autonomic and neuroimmune signaling with inflammation. Increased expression of cholinergic markers on immune cells correlated with an anti-inflammatory profile in the spleen, consistent with activation of the splenic cholinergic anti-inflammatory pathway in mice with spontaneous chronic colitis. However, enhanced sympathetic signaling occurred in mice with a less severe phenotype of colitis, which could represent an adaptive mechanism to mitigate the progression of intestinal inflammation.


Asunto(s)
Colitis , Animales , Colitis/patología , Modelos Animales de Enfermedad , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Prolapso , Nervio Vago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA