Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microb Pathog ; 181: 106200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315629

RESUMEN

The membrane-damaging RTX family cytotoxin RtxA is a key virulence factor of the emerging pediatric pathogen Kingella kingae, but little is known about the mechanism of RtxA binding to host cells. While we have previously shown that RtxA binds cell surface glycoproteins, here we demonstrate that the toxin also binds different types of gangliosides. The recognition of gangliosides by RtxA depended on sialic acid side groups of ganglioside glycans. Moreover, binding of RtxA to epithelial cells was significantly decreased in the presence of free sialylated gangliosides, which inhibited cytotoxic activity of the toxin. These results suggest that RtxA utilizes sialylated gangliosides as ubiquitous cell membrane receptor molecules on host cells to exert its cytotoxic action and support K. kingae infection.


Asunto(s)
Toxinas Bacterianas , Kingella kingae , Humanos , Niño , Kingella kingae/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Factores de Virulencia/metabolismo , Citotoxinas/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293453

RESUMEN

The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the ß2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the ß2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Bordetella pertussis/metabolismo , Factores de Virulencia de Bordetella , Hemaglutininas/metabolismo , Antígenos CD18 , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Antígeno de Macrófago-1 , Integrinas , Heparina , Péptido Hidrolasas , Glicosaminoglicanos
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445770

RESUMEN

The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air-liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC- toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT- toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.


Asunto(s)
Toxina de Adenilato Ciclasa/toxicidad , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema Respiratorio/metabolismo , Sistema Respiratorio/microbiología , Animales , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Ratones , Ratones Endogámicos BALB C , Mucina 5AC/metabolismo , Tos Ferina/metabolismo , Tos Ferina/microbiología
4.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260488

RESUMEN

The Gram-negative coccobacillus Kingella kingae is increasingly recognized as an important invasive pediatric pathogen that causes mostly bacteremia and skeletal system infections. K. kingae secretes an RtxA toxin that belongs to a broad family of the RTX (Repeats in ToXin) cytotoxins produced by bacterial pathogens. Recently, we demonstrated that membrane cholesterol facilitates interaction of RtxA with target cells, but other cell surface structures potentially involved in toxin binding to cells remain unknown. We show that deglycosylation of cell surface structures by glycosidase treatment, or inhibition of protein N- and O-glycosylation by chemical inhibitors substantially reduces RtxA binding to target cells. Consequently, the deglycosylated cells were more resistant to cytotoxic activity of RtxA. Moreover, experiments on cells expressing or lacking cell surface integrins of the ß2 family revealed that, unlike some other cytotoxins of the RTX family, K. kingae RtxA does not bind target cells via the ß2 integrins. Our results, hence, show that RtxA binds cell surface oligosaccharides present on all mammalian cells but not the leukocyte-restricted ß2 integrins. This explains the previously observed interaction of the toxin with a broad range of cell types of various mammalian species and reveals that RtxA belongs to the group of broadly cytolytic RTX hemolysins.


Asunto(s)
Toxinas Bacterianas/metabolismo , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Kingella kingae/metabolismo , Oligosacáridos/metabolismo , Animales , Muerte Celular , Línea Celular , Femenino , Glicósido Hidrolasas/metabolismo , Glicosilación , Humanos , Macrófagos/metabolismo , Ratones , Oligosacáridos/química , Unión Proteica
5.
Microorganisms ; 10(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35336094

RESUMEN

The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.

6.
Toxins (Basel) ; 11(6)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226835

RESUMEN

Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase activity that invade host cells and massively increase the cellular concentrations of a key second messenger molecule, 3',5'-cyclic adenosine monophosphate (cAMP). However, the two toxins differ in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis. By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect the opsonophagocytic signaling in myeloid phagocytes.


Asunto(s)
Toxina de Adenilato Ciclasa/toxicidad , Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , AMP Cíclico/metabolismo , Fagocitos/efectos de los fármacos , Citoesqueleto de Actina/efectos de los fármacos , Humanos , Proteínas Opsoninas/farmacología , Fagocitos/metabolismo , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Receptores Inmunológicos/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis Espacio-Temporal , Células THP-1
7.
Toxicol Res ; 28(3): 151-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24278604

RESUMEN

This paper describes the effects of thermally oxidized tallow on the serum lipids profile and radical scavenging activity (RSA) of the lipids extracted from the different tissues of the rabbits. Tallow was thermally oxidized at 130℃ for 9, 18, 27, 36 and 45 h respectively. Thermally oxidized tallow was fed to the local strain of Himalayan rabbits for one week. Results show that oxidation increases the formation of hydroperoxides and decrease the level of radical scavenging activity of the tallow. The rabbit serum lipids profile showed a dose dependent increase in triglyceride, total cholesterol and LDL-cholesterol. However, no statistically significant increase was observed in the HDL-cholesterol with an increase of oxidation time. Serum glucose and rabbits body weight decrease significantly (p < 0.05) and was highly correlated with the serum lipids profile. The percent RSA of the lipids extracted from the liver, brain and muscles tissues showed a significant decrease with respect to 0.5, 1.0 and 1.5 g/body weight as well as oxidation time. Data suggests that thermal oxidation and use of thermally oxidized beef tallow is harmful and therefore an alternative way of cooking should be used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA