Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 162(2): 314-327, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144317

RESUMEN

The large (L) proteins of non-segmented, negative-strand RNA viruses, a group that includes Ebola and rabies viruses, catalyze RNA-dependent RNA polymerization with viral ribonucleoprotein as template, a non-canonical sequence of capping and methylation reactions, and polyadenylation of viral messages. We have determined by electron cryomicroscopy the structure of the vesicular stomatitis virus (VSV) L protein. The density map, at a resolution of 3.8 Å, has led to an atomic model for nearly all of the 2109-residue polypeptide chain, which comprises three enzymatic domains (RNA-dependent RNA polymerase [RdRp], polyribonucleotidyl transferase [PRNTase], and methyltransferase) and two structural domains. The RdRp resembles the corresponding enzymatic regions of dsRNA virus polymerases and influenza virus polymerase. A loop from the PRNTase (capping) domain projects into the catalytic site of the RdRp, where it appears to have the role of a priming loop and to couple product elongation to large-scale conformational changes in L.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/ultraestructura , Virus de la Estomatitis Vesicular Indiana/química , Proteínas Virales/química , Proteínas Virales/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transcripción Genética
2.
EMBO J ; 31(5): 1320-9, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22246179

RESUMEN

The minimal RNA synthesis machinery of non-segmented negative-strand RNA viruses comprises a genomic RNA encased within a nucleocapsid protein (N-RNA), and associated with the RNA-dependent RNA polymerase (RdRP). The RdRP is contained within a viral large (L) protein, which associates with N-RNA through a phosphoprotein (P). Here, we define that vesicular stomatitis virus L initiates synthesis via a de-novo mechanism that does not require N or P, but depends on a high concentration of the first two nucleotides and specific template requirements. Purified L copies a template devoid of N, and P stimulates L initiation and processivity. Full processivity of the polymerase requires the template-associated N protein. This work provides new mechanistic insights into the workings of a minimal RNA synthesis machine shared by a broad group of important human, animal and plant pathogens, and defines a mechanism by which specific inhibitors of RNA synthesis function.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Viral/metabolismo , Vesiculovirus/enzimología , Proteínas Virales/metabolismo , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Modelos Biológicos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Virales/aislamiento & purificación
3.
Proc Natl Acad Sci U S A ; 109(36): 14628-33, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908284

RESUMEN

The RNA-dependent RNA polymerase (RdRP) of nonsegmented negative-sense RNA viruses consists of a large catalytic protein (L) and a phosphoprotein cofactor (P). During infection, the RdRP replicates and transcribes the viral genome, which resides inside an oligomer of nucleocapsid protein (N-RNA). The classical view of P as a cofactor for L assigns a primary role of P as a bridge mediating the access of L to the RNA template, whereby its N-terminal domain (P(NTD)) binds L and its C-terminal domain (P(CTD)) binds N-RNA. Recent biochemical and structural studies of a prototype nonsegmented negative-sense RNA virus, vesicular stomatitis virus, suggest a role for P beyond that of a mere physical link: P induces a structural rearrangement in L and stimulates polymerase processivity. In this study, we investigated the critical requirements within P mediating the functional interaction with L to form a fully functional RdRP. We analyzed the correlation between the impact of P on the conformation of L and its activity in RNA synthesis and the consequences of these events on RdRP function. We identified three separable elements of the P(NTD) that are required for inducing the conformational rearrangement of L, stimulating polymerase processivity, and mediating transcription of the N-RNA. The functional interplay between these elements provides insight into the role of P as a dynamic player in the RNA synthesis machine, influencing essential aspects of polymerase structure and function.


Asunto(s)
Modelos Biológicos , Fosfoproteínas/metabolismo , Conformación Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Vesiculovirus/enzimología , Proteínas Estructurales Virales/metabolismo , Replicación Viral/fisiología , Western Blotting , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Microscopía Electrónica , Proteínas de la Nucleocápside/metabolismo , Proteínas Virales/metabolismo
4.
J Virol ; 86(16): 8720-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22674999

RESUMEN

The vesicular stomatitis virus (VSV) nucleoprotein (N) associates tightly with the viral genomic RNA. This N-RNA complex constitutes the template for the RNA-dependent RNA polymerase L, which engages the nucleocapsid via its phosphoprotein cofactor P. While N and P proteins play important roles in regulating viral gene expression, the molecular basis of this regulation remains incompletely understood. Here we show that mutations in the extreme C terminus of N cause defects in viral gene expression. To determine the underlying cause of such defects, we examined the effects of the mutations separately on encapsidation and RNA synthesis. Expression of N together with P in Escherichia coli results predominantly in the formation of decameric N-RNA rings. In contrast, nucleocapsid complexes containing the substitution N(Y415A) or N(K417A) were more loosely coiled, as revealed by electron microscopy (EM). In addition, the N(EF419/420AA) mutant was unable to encapsidate RNA. To further characterize these mutants, we engineered an infectious cDNA clone of VSV and employed N-RNA templates from those viruses to reconstitute RNA synthesis in vitro. The transcription assays revealed specific defects in polymerase utilization of the template that result in overall decreased RNA quantities, including reduced amounts of leader RNA. Passage of the recombinant viruses in cell culture led to the accumulation of compensatory second-site mutations in close proximity to the original mutations, underscoring the critical role of structural features within the C terminus in regulating N function.


Asunto(s)
Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Vesiculovirus/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Cápside/ultraestructura , Análisis Mutacional de ADN , Escherichia coli/genética , Expresión Génica , Microscopía Electrónica , Unión Proteica , Multimerización de Proteína
5.
PLoS Pathog ; 7(6): e1002073, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21655110

RESUMEN

The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2'-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization.


Asunto(s)
ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética , Vesiculovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Región de Flanqueo 5'/genética , Animales , Células Cultivadas , Guanina/metabolismo , Metilación , Nucleocápside/genética , Organismos Modificados Genéticamente , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Ribosa/metabolismo , Spodoptera , Uridina Trifosfato/metabolismo , Estomatitis Vesicular/virología , Vesiculovirus/genética , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
6.
Proc Natl Acad Sci U S A ; 107(46): 20075-80, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041632

RESUMEN

Nonsegmented negative-strand (NNS) RNA viruses initiate infection by delivering into the host cell a highly specialized RNA synthesis machine comprising the genomic RNA completely encapsidated by the viral nucleocapsid protein and associated with the viral polymerase. The catalytic core of this protein-RNA complex is a 250-kDa multifunctional large (L) polymerase protein that contains enzymatic activities for nucleotide polymerization as well as for each step of mRNA cap formation. Working with vesicular stomatitis virus (VSV), a prototype of NNS RNA viruses, we used negative stain electron microscopy (EM) to obtain a molecular view of L, alone and in complex with the viral phosphoprotein (P) cofactor. EM analysis, combined with proteolytic digestion and deletion mapping, revealed the organization of L into a ring domain containing the RNA polymerase and an appendage of three globular domains containing the cap-forming activities. The capping enzyme maps to a globular domain, which is juxtaposed to the ring, and the cap methyltransferase maps to a more distal and flexibly connected globule. Upon P binding, L undergoes a significant rearrangement that may reflect an optimal positioning of its functional domains for transcription. The structural map of L provides new insights into the interrelationship of its various domains, and their rearrangement on P binding that is likely important for RNA synthesis. Because the arrangement of conserved regions involved in catalysis is homologous, the structural insights obtained for VSV L likely extend to all NNS RNA viruses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Vesiculovirus/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/ultraestructura
7.
Proc Natl Acad Sci U S A ; 107(46): 20069-74, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20978208

RESUMEN

Segmented negative-sense viruses of the family Arenaviridae encode a large polymerase (L) protein that contains all of the enzymatic activities required for RNA synthesis. These activities include an RNA-dependent RNA polymerase (RdRP) and an RNA endonuclease that cleaves capped primers from cellular mRNAs to prime transcription. Using purified catalytically active Machupo virus L, we provide a view of the overall architecture of this multifunctional polymerase and reconstitute complex formation with an RNA template in vitro. The L protein contains a central ring domain that is similar in appearance to the RdRP of dsRNA viruses and multiple accessory appendages that may be responsible for 5' cap formation. RNA template recognition by L requires a sequence-specific motif located at positions 2-5 in the 3' terminus of the viral genome. Moreover, L-RNA complex formation depends on single-stranded RNA, indicating that inter-termini dsRNA interactions must be partially broken for complex assembly to occur. Our results provide a model for arenavirus polymerase-template interactions and reveal the structural organization of a negative-strand RNA virus L protein.


Asunto(s)
Arenavirus del Nuevo Mundo/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Secuencia de Bases , Biocatálisis , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/ultraestructura , Moldes Genéticos , Proteínas Virales/aislamiento & purificación , Proteínas Virales/ultraestructura
8.
Biochemistry ; 51(1): 416-24, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22148433

RESUMEN

DNA polymerase delta (Pol δ) is a central enzyme for eukaryotic DNA replication and repair. Pol δ is a complex of four subunits p125, p68, p50, and p12. The functional properties of Pol δ are largely determined by its interaction with its DNA sliding clamp PCNA (proliferating cellular nuclear antigen). The regulatory mechanisms that govern the association of Pol δ with PCNA are largely unknown. In this study, we identified S458, located in the PCNA-interacting protein (PIP-Box) motif of p68, as a phosphorylation site for PKA. Phosphomimetic mutation of S458 resulted in a decrease in p68 affinity for PCNA as well as the processivity of Pol δ. Our results suggest a role of phosphorylation of the PIP-motif of p68 as a molecular switch that dynamically regulates the functional properties of Pol δ.


Asunto(s)
ADN Polimerasa III/química , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Ácido Aspártico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , ADN Polimerasa III/antagonistas & inhibidores , ADN Polimerasa III/genética , Regulación hacia Abajo/genética , Células HeLa , Humanos , Imitación Molecular/genética , Datos de Secuencia Molecular , Mutación , Fosforilación/genética , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica/genética , Procesamiento Proteico-Postraduccional/genética , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Serina/genética
9.
PLoS Pathog ; 6(6): e1000958, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20585632

RESUMEN

Positive-strand and double-strand RNA viruses typically compartmentalize their replication machinery in infected cells. This is thought to shield viral RNA from detection by innate immune sensors and favor RNA synthesis. The picture for the non-segmented negative-strand (NNS) RNA viruses, however, is less clear. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we examined the location of the viral replication machinery and RNA synthesis in cells. By short-term labeling of viral RNA with 5'-bromouridine 5'-triphosphate (BrUTP), we demonstrate that primary mRNA synthesis occurs throughout the host cell cytoplasm. Protein synthesis results in the formation of inclusions that contain the viral RNA synthesis machinery and become the predominant sites of mRNA synthesis in the cell. Disruption of the microtubule network by treatment of cells with nocodazole leads to the accumulation of viral mRNA in discrete structures that decorate the surface of the inclusions. By pulse-chase analysis of the mRNA, we find that viral transcripts synthesized at the inclusions are transported away from the inclusions in a microtubule-dependent manner. Metabolic labeling of viral proteins revealed that inhibiting this transport step diminished the rate of translation. Collectively those data suggest that microtubule-dependent transport of viral mRNAs from inclusions facilitates their translation. Our experiments also show that during a VSV infection, protein synthesis is required to redirect viral RNA synthesis to intracytoplasmic inclusions. As viral RNA synthesis is initially unrestricted, we speculate that its subsequent confinement to inclusions might reflect a cellular response to infection.


Asunto(s)
Cuerpos de Inclusión/fisiología , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Estomatitis Vesicular/metabolismo , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas Virales/metabolismo , Humanos , Polirribosomas , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Viral/genética , Transcripción Genética , Estomatitis Vesicular/genética , Proteínas Virales/genética , Replicación Viral
10.
Nat Commun ; 13(1): 5907, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207308

RESUMEN

The therapeutic effectiveness of oncolytic viruses (OVs) delivered intravenously is limited by the development of neutralizing antibody responses against the virus. To circumvent this limitation and to enable repeated systemic administration of OVs, here we develop Synthetic RNA viruses consisting of a viral RNA genome (vRNA) formulated within lipid nanoparticles. For two Synthetic RNA virus drug candidates, Seneca Valley virus (SVV) and Coxsackievirus A21, we demonstrate vRNA delivery and replication, virus assembly, spread and lysis of tumor cells leading to potent anti-tumor efficacy, even in the presence of OV neutralizing antibodies in the bloodstream. Synthetic-SVV replication in tumors promotes immune cell infiltration, remodeling of the tumor microenvironment, and enhances the activity of anti-PD-1 checkpoint inhibitor. In mouse and non-human primates, Synthetic-SVV is well tolerated reaching exposure well above the requirement for anti-tumor activity. Altogether, the Synthetic RNA virus platform provides an approach that enables repeat intravenous administration of viral immunotherapy.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Picornaviridae , Animales , Anticuerpos Neutralizantes , Inmunoterapia , Liposomas , Ratones , Nanopartículas , Neoplasias/terapia , Virus Oncolíticos/genética , ARN Viral/genética , Microambiente Tumoral
11.
J Virol ; 83(21): 11043-50, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19710136

RESUMEN

During conventional mRNA cap formation, two separate methyltransferases sequentially modify the cap structure, first at the guanine-N-7 (G-N-7) position and subsequently at the ribose 2'-O position. For vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses, the two methylase activities share a binding site for the methyl donor S-adenosyl-l-methionine and are inhibited by individual amino acid substitutions within the C-terminal domain of the large (L) polymerase protein. This led to the suggestion that a single methylase domain functions for both 2'-O and G-N-7 methylations. Here we report a trans-methylation assay that recapitulates both ribose 2'-O and G-N-7 modifications by using purified recombinant L and in vitro-synthesized RNA. Using this assay, we demonstrate that VSV L typically modifies the 2'-O position of the cap prior to the G-N-7 position and that G-N-7 methylation is diminished by pre-2'-O methylation of the substrate RNA. Amino acid substitutions in the C terminus of L that prevent all cap methylation in recombinant VSV (rVSV) partially retain the ability to G-N-7 methylate a pre-2'-O-methylated RNA, therefore uncoupling the effect of substitutions in the C terminus of the L protein on the two methylations. In addition, we show that the 2'-O and G-N-7 methylase activities act specifically on RNA substrates that contain the conserved elements of a VSV mRNA start at the 5' terminus. This study provides new mechanistic insights into the mRNA cap methylase activities of VSV L, demonstrates that 2'-O methylation precedes and facilitates subsequent G-N-7 methylation, and reveals an RNA sequence and length requirement for the two methylase activities. We propose a model of regulation of the activity of the C terminus of L protein in 2'-O and G-N-7 methylation of the cap structure.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Guanina/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Ribosa/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Caperuzas de ARN/genética , ARN Mensajero/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
12.
Oncotarget ; 7(5): 6294-313, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26819372

RESUMEN

PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.


Asunto(s)
ADN Polimerasa III/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , ADN Polimerasa III/genética , Replicación del ADN , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Unión Proteica , Proteínas de Unión al ARN/genética
13.
Curr Opin Virol ; 3(2): 103-10, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23602472

RESUMEN

Negative-sense (NS) RNA viruses deliver into cells a mega-dalton RNA-protein complex competent for transcription. Within this complex, the RNA is protected in a nucleocapsid protein (NP) sheath which the viral polymerase negotiates during RNA synthesis. The NP-RNA templates come as nonsegmented (NNS) or segmented (SNS), necessitating distinct strategies for transcription by their polymerases. Atomic-level understanding of the NP-RNA of both NNS and SNS RNA viruses show that the RNA must be transiently dissociated from NP during RNA synthesis. Here we summarize and compare the polymerases of NNS and SNS RNA viruses, and the current structural data on the polymerases. Those comparisons inform us on the evolution of related RNA synthesis machines which use two distinct mechanisms for mRNA cap formation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Virus ARN/enzimología , ARN Viral/biosíntesis , Replicación Viral , ARN Polimerasas Dirigidas por ADN/genética , Modelos Biológicos , Modelos Moleculares , Ensamble de Virus
14.
Brain Inj ; 18(12): 1229-41, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15666567

RESUMEN

PURPOSE: To investigate if energy precursor supplementation is neuroprotective in two neuroexcitotoxicity models; the kainate and the kainate followed by chronic phenobarbital models. METHODS: Rats in experiment 1 received 1% creatine or cyclocreatine chow from age (P) 21-65 days, underwent kainate induced status epilepticus on P35 and were compared, as adults, to kainate alone rats and to normal controls. Rats in experiment 2 received 1% creatine chow (P21-P85), underwent kainate status epilepticus on P35, received daily phenobarbital (or saline) injections (P36-P85) and were compared, as adults, to kainate, kainate-phenobarbital and to normal control rats that received regular chow. RESULTS: In experiment 1, the cyclocreatine-kainate group had increased emotionality and visuospatial learning deficits on the handling and watermaze tests as compared to all other groups. Creatine supplementation did not have any effects. In experiment 2, creatine supplementation did not prevent spontaneous recurrent seizures, aggressivity on the handling test or hippocampal histologic injury. CONCLUSION: Energy precursor supplementation in the doses used did not have neuroprotective effects in the kainate or kainate-phenobarbital models in pre-pubescent rats.


Asunto(s)
Creatina/administración & dosificación , Creatinina/análogos & derivados , Creatinina/administración & dosificación , Suplementos Dietéticos , Fármacos Neuroprotectores/administración & dosificación , Estado Epiléptico/fisiopatología , Enfermedad Aguda , Agresión/efectos de los fármacos , Agresión/fisiología , Animales , Anticonvulsivantes , Emociones/efectos de los fármacos , Emociones/fisiología , Hipocampo/patología , Ácido Kaínico , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Fenobarbital , Ratas , Ratas Sprague-Dawley , Recurrencia , Convulsiones/prevención & control , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA