Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(3): 312-321, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33510463

RESUMEN

Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1-/- tissues exhibited mosaic dependency upon nucleic acid receptors. Whereas salivary and lacrimal gland autoimmune pathology was abolished and lung pathology was attenuated by cGAS and STING deletion, pancreatic pathology remained unchanged. These findings reveal fundamental connections between mitochondrial quality control and tissue-selective autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Fibroblastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Mitofagia , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Células Cultivadas , Fibroblastos/inmunología , Fibroblastos/patología , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
2.
Int J Neurosci ; 133(10): 1120-1123, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35369847

RESUMEN

Background: Transverse myelitis (TM) is a rare, acquired neuro-immunological spinal cord disorder that occurs with rapid onset of motor weakness, sensory deficits with bowel and bladder dysfunction. Patients being treated with immune checkpoint inhibitors (ICIs) for advanced malignancy have a known higher propensity of developing neuro immune complications. With the advent of COVID-19 pandemic there have been reported cases of TM with COVID-19 immunization. The reported infrequency of TM with both of the aforementioned causes makes delineation of the etiology challenging.Methods: We present a patient with metastatic small cell lung cancer (SCLC) on maintenance Atezolizumab immunotherapy who developed longitudinal extensive transverse myelitis (LETM) after administration of second dose of COVID-19 mRNA vaccine one day prior to presenting symptoms of acute paralysis of the lower extremity, sensory loss from chest down with overflow incontinence. A clinical diagnosis of myelopathy was supported by MRI of the spine illustrating enhancing lesions from C7-T7 concerning for LETM.Results: A 5-day course of pulsed methylprednisolone followed by therapeutic plasma exchange for 3 days resulted in only minimal improvement in the neurologic exam with increased strength in his lower extremities while the sensory level remained unchanged.Conclusions: This case demonstrates the complication and symptomatology of TM in the setting of anti-PD-L1 monoclonal antibody with coincidental COVID-19 mRNA vaccine administration. The causal relationship between the vaccine and LETM is difficult to establish. However, the presence of a known inciting factor hints at a possible exaggeration of the existing neuro-inflammatory process.


Asunto(s)
COVID-19 , Mielitis Transversa , Enfermedades de la Médula Espinal , Humanos , Mielitis Transversa/inducido químicamente , Mielitis Transversa/terapia , Vacunas contra la COVID-19/efectos adversos , Pandemias , COVID-19/complicaciones , Inmunización/efectos adversos
3.
Protein Expr Purif ; 193: 106059, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114377

RESUMEN

Bacillus anthracis produces a tripartite exotoxin, which is regulated by AtxA. Sodmn is constitutively expressed during invasion. Crp/Fnr family transcriptional regulators are known to bind promoters of toxin regulators as well as constitutively expressed genes during pathogenesis. B. anthracis fnr gene was cloned, over-expressed in E. coli and recombinant protein was purified. Oligomeric nature of recombinant rFnr protein was studied by diamide treatment and DTT reduction. DNA binding of rFnr protein was studied by EMSA. We observed that rFnr exists in both monomeric and oligomeric forms. It was found that rFnr was able to oligomerize after diamide treatment which was reversible through DTT reduction. Promoter regions of atxA and sodmn show binding to monomeric form of rFnr, however, dimeric form was unable to bind. Fnr might be playing a role in regulation of toxin gene expression via regulation of atxA gene. It can also be involved in regulation of pathogenesis by regulating the sodmn expression. Oligomerization can act as an ON/OFF switch for the Fnr mediated regulation.


Asunto(s)
Bacillus anthracis , Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas Bacterianas , Diamida/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Pulm Pharmacol Ther ; 76: 102156, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030026

RESUMEN

Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs), inflammation, as well as mitochondrial and metabolic dysregulation, contributes to the development of pulmonary hypertension (PH). Pyrroloquinoline quinone (PQQ), a potent natural antioxidant with anti-diabetic, neuroprotective, and cardioprotective properties, is known to promote mitochondrial biogenesis. However, its effect on cellular proliferation, apoptosis resistance, mitochondrial and metabolic alterations associated with PH remains unexplored. The current study was designed to investigate the effect of PQQ in the treatment of PH. Human pulmonary artery smooth muscle cells (HPASMCs), endothelial cells (PAECs), and primary cultured cardiomyocytes were subjected to hypoxia to induce PH-like phenotype. Furthermore, Sprague Dawley (SD) rats injected with monocrotaline (MCT) (60 mg/kg, SC, once) progressively developed pulmonary hypertension. PQQ treatment (2 mg/kg, PO, for 35 days) attenuated cellular proliferation and promoted apoptosis via a mitochondrial-dependent pathway. Furthermore, PQQ treatment in HPASMCs prevented mitochondrial and metabolic dysfunctions, improved mitochondrial bioenergetics while preserving respiratory complexes, and reduced insulin resistance. In addition, PQQ treatment (preventive and curative) significantly attenuated the increase in right ventricle pressure and hypertrophy as well as reduced endothelial dysfunction and pulmonary artery remodeling in MCT-treated rats. PQQ also prevented cardiac fibrosis and improved cardiac functions as well as reduced inflammation in MCT-treated rats. Altogether, the above findings demonstrate that PQQ can attenuate mitochondrial as well as metabolic abnormalities in PASMCs and also prevent the development of PH in MCT treated rats; hence PQQ may act as a potential therapeutic agent for the treatment of PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Células Endoteliales , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Monocrotalina , Cofactor PQQ/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Arteria Pulmonar , Ratas , Ratas Sprague-Dawley
5.
Int J Neurosci ; 132(12): 1187-1189, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33372575

RESUMEN

Various neurological manifestations involving the central and peripheral nervous system have been reported in association with COVID-19. Most common associations reported are encephalopathy, headache, ischemic, hemorrhagic stroke and transient ischemic attack, Miller Fisher syndrome, cranial neuropathies and Guillain-Barre syndrome. Of the cranial neuropathies, anosmia, and dysgeusia are the most common reported symptoms. This is a case of COVID-19 with ipsilateral fifth and seventh cranial nerve involvement with complete resolution of symptoms over a period of 3 weeks. The neurological symptoms started within 5 days of respiratory symptoms. We conclude that isolated cranial neuropathies can be the manifestations of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Enfermedades de los Nervios Craneales , Síndrome de Guillain-Barré , Enfermedades del Sistema Nervioso , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Síndrome de Guillain-Barré/complicaciones , Cefalea , Enfermedades de los Nervios Craneales/etiología , Enfermedades del Sistema Nervioso/diagnóstico
6.
Pharmacol Res ; 172: 105776, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450319

RESUMEN

Obesity and associated metabolic disorders are heading up with an alarming rate in developing nations. One of highly sought solution for metabolic disorders is to identify natural molecule with an ability to reduce obesity and increase insulin sensitivity. Coelogin (CLN) is a phenanthrene derivative isolated from the ethanolic extract of Coelogyne cristata. In our constant efforts to identify novel anti-dyslipidemic and anti-adipogenic compounds using CFPMA (common feature pharmacophore model using known anti-adipogenic compounds) model, predicted possible anti-adipogenic activity of CLN. In vitro results showed significant inhibition of adipogenesis in 3T3-L1 and C3H10T1/2 cell by CLN. It arrests the cell cycle in G1 phase of interphase and inhibits mitotic clonal expansion to regulate adipogenesis. CLN elicits insulin sensitizing effect in mature adipocytes. During extracellular flux assessment studies, it increases oxidative respiration and energy expenditure in adipocytes. In vivo, CLN reversed HFD-induced dyslipidemia as well as insulin resistance in C57BL/6 mice. It promoted the expression of genes involved in improved mitochondrial function and fatty acid oxidation in eWAT. CLN restored energy expenditure and increased the capacity of energy utilization in HFD fed mice. Taken together, the study indicated beneficial effects of CLN in combating obesity-associated metabolic complications.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Fenantrenos/uso terapéutico , Piranos/uso terapéutico , Adipogénesis/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glicerol/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/metabolismo , Oxígeno/metabolismo , Fenantrenos/farmacología , Piranos/farmacología
7.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G95-G105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30335469

RESUMEN

Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder. Genetic association studies have implicated dysregulated autophagy in CD. Among risk loci identified are a promoter single nucleotide polymorphism (SNP)( rs13361189 ) and two intragenic SNPs ( rs9637876 , rs10065172 ) in immunity-related GTPase family M ( IRGM) a gene that encodes a protein of the autophagy initiation complex. All three SNPs have been proposed to modify IRGM expression, but reports have been divergent and largely derived from cell lines. Here, analyzing RNA-Sequencing data of human tissues from the Genotype-Tissue Expression Project, we found that rs13361189 minor allele carriers had reduced IRGM expression in whole blood and terminal ileum, and upregulation in ileum of ZNF300P1, a locus adjacent to IRGM on chromosome 5q33.1 that encodes a long noncoding RNA. Whole blood and ileum from minor allele carriers had altered expression of multiple additional genes that have previously been linked to colitis and/or autophagy. Notable among these was an increase in ileum of LTF (lactoferrin), an established fecal inflammatory biomarker of CD, and in whole blood of TNF, a key cytokine in CD pathogenesis. Last, we confirmed that risk alleles at all three loci associated with increased risk for CD but not ulcerative colitis in a case-control study. Taken together, our findings suggest that genetically encoded IRGM deficiency may predispose to CD through dysregulation of inflammatory gene networks. Gene expression profiling of disease target tissues in genetically susceptible populations is a promising strategy for revealing new leads for the study of molecular pathogenesis and, potentially, for precision medicine. NEW & NOTEWORTHY Single nucleotide polymorphisms in immunity-related GTPase family M ( IRGM), a gene that encodes an autophagy initiation protein, have been linked epidemiologically to increased risk for Crohn's disease (CD). Here, we show for the first time that subjects with risk alleles at two such loci, rs13361189 and rs10065172 , have reduced IRGM expression in whole blood and terminal ileum, as well as dysregulated expression of a wide array of additional genes that regulate inflammation and autophagy.


Asunto(s)
Autofagia/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Proteínas de Unión al GTP/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Estudios de Asociación Genética , Humanos , Riesgo
8.
Epilepsy Behav ; 99: 106491, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31654987

RESUMEN

The diagnosis of psychogenic nonepileptic seizures (PNES) remains challenging. In the correct clinical setting with prolonged electroencephalography (EEG) monitoring, the specificity of provocative techniques to distinguish induced epileptic event from a nonepileptic event approaches 90%. We report our epilepsy monitoring unit (EMU) experience with the use of noninvasive verbal suggestion (VS) during hyperventilation (HV), photic stimulation (PS) as induction technique in making the diagnosis of PNES. In total, 189/423 patients were diagnosed with PNES during the EMU evaluation. Of the 189, 20 had mixed disorder and 169 patients had only PNES, 80 patients (47.3%) had a PNES with induction, and the remaining 89 of 169 patients (52.7%) had a spontaneous PNES episode that did not require induction. Verbal suggestion during HV and PS confirmed the diagnosis of PNES in 47% of the patients who otherwise did not have spontaneous events. Within the group who was diagnosed with PNES following induction, antiepileptic drugs (AEDs) were stopped in 53% of the patients. We believe that this is a large proportion of patients that would possibly remain undiagnosed if no induction were performed.


Asunto(s)
Técnicas de Diagnóstico Neurológico , Trastornos Psicofisiológicos/diagnóstico , Convulsiones/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Efecto Placebo , Trastornos Psicofisiológicos/psicología , Sugestión , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 112(26): E3421-30, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080406

RESUMEN

Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.


Asunto(s)
Apoptosis , Daño del ADN , Peróxido de Hidrógeno/metabolismo , Alveolos Pulmonares/metabolismo , Streptococcus pneumoniae/metabolismo , Animales , Reparación del ADN , Células Epiteliales/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Alveolos Pulmonares/citología , Streptococcus pneumoniae/patogenicidad , Virulencia
10.
J Biol Chem ; 291(37): 19651-60, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27471270

RESUMEN

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products. These miRNAs regulate macrophage cholesterol by targeting the lipid efflux transporters ATP binding cassette (ABC)A1 and ABCG1. We and others have previously reported that Abca1(-/-) and Abcg1(-/-) macrophages have increased TLR proinflammatory responses due to augmented lipid raft cholesterol. Given this, we hypothesized that miR-33 would augment TLR signaling in macrophages via a raft cholesterol-dependent mechanism. Herein, we report that multiple TLR ligands down-regulate miR-33 in murine macrophages. In the case of lipopolysaccharide, this is a delayed, Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-ß-dependent response that also down-regulates Srebf-2, the host gene for miR-33. miR-33 augments macrophage lipid rafts and enhances proinflammatory cytokine induction and NF-κB activation by LPS. This occurs through an ABCA1- and ABCG1-dependent mechanism and is reversible by interventions upon raft cholesterol and by ABC transporter-inducing liver X receptor agonists. Taken together, these findings extend the purview of miR-33, identifying it as an indirect regulator of innate immunity that mediates bidirectional cross-talk between lipid homeostasis and inflammation.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/inmunología , Inmunidad Innata , Macrófagos/inmunología , Microdominios de Membrana/inmunología , MicroARNs/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Microdominios de Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Células RAW 264.7 , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/inmunología
12.
Cell Mol Life Sci ; 72(15): 2973-88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25809161

RESUMEN

Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.


Asunto(s)
Daño del ADN/genética , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/fisiopatología , Regeneración/genética , Regeneración/fisiología , Animales , Línea Celular , Reparación del ADN/genética , Perros , Subtipo H1N1 del Virus de la Influenza A , Pulmón/fisiopatología , Pulmón/virología , Células de Riñón Canino Madin Darby , Estrés Oxidativo/genética , Neumonía/fisiopatología , Neumonía/virología
13.
J Biomed Inform ; 51: 272-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24973735

RESUMEN

Epilepsy is a common serious neurological disorder with a complex set of possible phenotypes ranging from pathologic abnormalities to variations in electroencephalogram. This paper presents a system called Phenotype Exaction in Epilepsy (PEEP) for extracting complex epilepsy phenotypes and their correlated anatomical locations from clinical discharge summaries, a primary data source for this purpose. PEEP generates candidate phenotype and anatomical location pairs by embedding a named entity recognition method, based on the Epilepsy and Seizure Ontology, into the National Library of Medicine's MetaMap program. Such candidate pairs are further processed using a correlation algorithm. The derived phenotypes and correlated locations have been used for cohort identification with an integrated ontology-driven visual query interface. To evaluate the performance of PEEP, 400 de-identified discharge summaries were used for development and an additional 262 were used as test data. PEEP achieved a micro-averaged precision of 0.924, recall of 0.931, and F1-measure of 0.927 for extracting epilepsy phenotypes. The performance on the extraction of correlated phenotypes and anatomical locations shows a micro-averaged F1-measure of 0.856 (Precision: 0.852, Recall: 0.859). The evaluation demonstrates that PEEP is an effective approach to extracting complex epilepsy phenotypes for cohort identification.


Asunto(s)
Ontologías Biológicas , Electroencefalografía/clasificación , Epilepsia/clasificación , Epilepsia/diagnóstico , Procesamiento de Lenguaje Natural , Resumen del Alta del Paciente/clasificación , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Minería de Datos/métodos , Registros de Salud Personal , Humanos , Fenotipo , Semántica
14.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38498701

RESUMEN

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Asunto(s)
Integrinas , Neutrófilos , Accidente Cerebrovascular , Molécula 1 de Adhesión Celular Vascular , Trombosis de la Vena , Animales , Humanos , Masculino , Ratones , Adhesión Celular , Modelos Animales de Enfermedad , Integrinas/metabolismo , Ratones Noqueados , Activación Neutrófila , Neutrófilos/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/etiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Trombosis de la Vena/metabolismo , Trombosis de la Vena/etiología
15.
Lasers Med Sci ; 28(2): 579-87, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22581389

RESUMEN

Impurity-free, controlled synthesis of iron oxide nanoparticle, in ultrapure water and chitosan, using laser ablation technique and its application for type II diabetes management through oral delivery of insulin-loaded iron oxide-chitosan nanocomposite is presented. The purity of the nanoparticle is monitored by laser-induced breakdown spectroscopy technique. The synthesized iron oxide nanoparticle was characterized by UV/Vis absorption spectroscopy, and morphological study was performed by scanning electron microscope. The intensity of absorption peak and wavelength corresponding to peak of the nanoparticle prepared in water and chitosan is dependent on the laser energy used for ablation purpose. Red shift in the absorption peak wavelength was observed by increasing laser energy. In addition to red shift, an increase in intensity of absorption peak was also seen when ablating laser energy was increased. The appearance of a weak peak around 295 nm was observed in iron oxide-chitosan nanocomposite. The spherical shape of the nanoparticle synthesized at the lower laser energy has gradually changed to triangular and irregular shaped structures as ablating laser energy was increased. The spherical nanoparticles loaded with insulin were used for oral delivery for diabetic management. The iron oxide-chitosan nanocomposite loaded with insulin has resulted in reduction in blood glucose level in mild diabetic, subdiabetic, and severely diabetic rats; more than 51 % reduction in blood glucose level, compared to the control group, has been achieved in the present work.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Compuestos Férricos/síntesis química , Insulina/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Animales , Glucemia/metabolismo , Técnicas de Química Sintética , Quitosano/química , Coloides/química , Femenino , Compuestos Férricos/administración & dosificación , Terapia por Láser , Masculino , Ratas , Ratas Wistar , Espectrofotometría Ultravioleta
16.
Int J Surg Case Rep ; 105: 107975, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36940541

RESUMEN

INTRODUCTION AND IMPORTANCE: Leiomyoma is the most common gynecologic tumor which may show atypical locations and degenerations. Cystic degeneration is said to be found in 4 % of all degenerations. Endometriosis, the presence of endometrial glands and stroma at extrauterine sites, is a common gynaecological condition seen in 10 % to 15 % of reproductive-age women usually being associated with various degrees of fertility problems. CASE PRESENTATION: 40 years old woman with P1L1A2, with secondary sub-fertility for 5 years, presented with chief complaints of dysmenorrhoea for 1 year initially around the menstrual cycle relieving with analgesics but later not limited to the menstrual cycle and pain not relieving with analgesics since 1 month. The patient underwent fertility-sparing laparoscopic removal avoiding a laparotomy and definitive hysterectomy. Manual morcellation was achieved. CLINICAL DISCUSSION: Cystic degeneration is rare in Leiomyoma although it is the more common gynaecological tumor in women and is associated with endometriosis probably due to retrograde menstruation. CONCLUSIONS: Laparoscopic removal of leiomyoma without laparotomy and definitive hysterectomy for a case of cystic endometriosis in a degenerated subserous myoma which to the best of our knowledge according to our search of articles on the relevant topic is the first reported case pertaining to the topic from Nepal.

17.
Nat Prod Res ; 37(14): 2461-2465, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35285353

RESUMEN

Chamaecostus cuspidatus (Nees & Mart.) C.D.Specht & D.W.Stev and Cheilocostus speciosus (J.Koenig) C.D.Specht contain bioactive compounds that possess many pharmacological activities including antidiabetic and hypolipidemic. These plants are used to treat diabetes by herbal healers. Considering the traditional use of C. cuspidatus and C. speciosus, the present study is designed to perform qualitative and quantitative analysis as well as in-vitro anti-adipogenesis against 3T3-L1 cells to ensure efficacy. A total of thirty-eight compounds were identified using HPLC-QTOF-MS/MS. Quantification of ten bioactive compounds among identified compounds was performed by UPLC-QqQLIT-MS/MS. The quantification method was validated according to ICH guidelines (International conference on harmonization guidelines). Quantification of bioactive compounds of different organs of C. cuspidatus and C. speciosus showed remarkable differences in the content. Microscopic and ORO absorbance confirmed the antiadipogenic potential of leaves (L-02), roots (R-02) of C. cuspidatus and leaves of C. speciosus (L-01) in 3T3-L1 cells.


Asunto(s)
Extractos Vegetales , Espectrometría de Masas en Tándem , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/análisis
18.
Fitoterapia ; 170: 105626, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516404

RESUMEN

Obesity-related metabolic disorders are increasing at an alarming rate worldwide. The FDA has approved many molecules for weight loss therapy; most of them act on the gut level by inhibiting lipid uptake or on the central nervous system by controlling appetite. Limitations and drawbacks have propelled the search for new pharmacophores exhibiting favourable metabolic alteration at adipocytes, and natural products have always been there to prove their worth. In our efforts, we have identified 16-hydroxy-ent-halima-5(10),13-dien-15,16-olide (PLH), a halimane diterpene isolated from Polyalthia longifolia, demonstrating anti-adipogenic and anti-dyslipidemic activity. It inhibited adipogenesis in 3T3-L1 preadipocyte and C3H10T1/2 mesenchymal stem cell lines. Furthermore, it decreased set of adipogenic markers at transcript and protein levels. Cell cycle studies indicated that PLH halts the mitotic clonal expansion. Mechanistic studies shows that PLH activate Wnt/ß-catenin signaling pathway to inhibit the adipogenesis. The study suggested that PLH inhibited adipogenesis during the early phase of differentiation by targeting mitotic clonal expansion and arresting the cell cycle in the G1 phase of the cell cycle. It improved the dyslipidemic condition in HFD-fed hamsters by decreasing the body weight, fat mass, eWAT weight and improving the serum lipid profile. Overall, PLH has been found as a potential drug candidate and a pharmacophore for combating metabolic disorders including obesity and dyslipidemia.


Asunto(s)
Dislipidemias , Polyalthia , Cricetinae , Animales , Humanos , Ratones , Adipogénesis , Estructura Molecular , Diferenciación Celular , Obesidad/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , Lípidos , Células 3T3-L1
19.
Eur J Med Chem ; 262: 115895, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883898

RESUMEN

Obesity is a chronic disorder with multifactorial etiology, including genetic, medical, dietary and other environmental factors. Both natural and synthetic heterocyclic compounds, especially oxazoles, represent an interesting group of compounds and have gained much attention due to their remarkable biological activities. Therefore, a library of 3,3-DMAH (3,3-dimethylallylhalfordinol) inspired N-alkylated oxazole bromide salts with varied substitutions were prepared and screened using the 3T3-L1 model of adipogenesis and HFD-induced obesity model in Syrian golden hamsters. Several compounds in the synthesized series displayed remarkable anti-adipogenic potential on the differentiation of 3T3-L1 preadipocytes. Compound 19e, displayed the most potent activity of all and selected for further studies. Compound 19e inhibited mitotic clonal expansion of 3T3-L1 cells and enhanced the mitochondrial oxygen consumption rate of the cells during early phase of differentiation via AMPK activation. 19e also improved the dyslipidaemia in high calorie diet fed Syrian Golden Hamsters. Therefore, compound 19e can serve as a potential lead against adipogenesis and dyslipidaemia models and could be further investigated to affirm its significance as a drug candidate.


Asunto(s)
Adipogénesis , Dislipidemias , Cricetinae , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Mesocricetus , Adipocitos/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Células 3T3-L1
20.
Sci Rep ; 13(1): 12911, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558924

RESUMEN

Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity.


Asunto(s)
Citocinas , Predisposición Genética a la Enfermedad , Humanos , Alelos , Citocinas/genética , Linfocitos T CD8-positivos , Estudios de Casos y Controles , Proteínas de Unión al GTP/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA