Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 195: 110753, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33485911

RESUMEN

The deep-sea is the biggest ecosystem in the world and despite the extreme conditions that characterize it, is highly biodiverse and complex. Deep-sea mining has been foreseen as a potential and concerning new stressor, and among the deep-sea mining associated stressors, sediment plumes, likely to be released into the water column as a side effect of mining, can reach habitats within a radius of more than a hundred kilometers. The present study examined the effects of suspended sediments of different grain sizes (63-125 µm, 125-250 µm and 250-500 µm) in the model species Mytilus galloprovincialis, at 4 bar, as a proxy to address the potential effects of sediment plumes, in the water column, with different grain sizes under high pressure conditions. Functional (filtration rate - FR), biochemical (catalase - CAT, glutathione s-transferase - GST, lipid peroxidation - LPO) and molecular (gene expression of [actin (ACTN), glutathione S-transferase alpha (GSTA), superoxide dismutase 2 (SOD2), catalase (CAT), heat shock protein 60 (HSP60), cytochrome c oxidase (COI) and DNA mismatch repair protein (MSH6)]) endpoints were studied in juvenile organisms. The FR decreased significantly for all tested grain size ranges, with a more severe effect for the particles with a diameter between 63 and 125 µm. In addition to the FR, significant changes were also observed for all tested biomarkers. Gene expression was significantly downregulated for CAT and ACTN. Overall, this study demonstrated that the smaller sized particles are the ones leading to more severe effects. Given their high dispersion potential and longer suspension periods under mining operation scenarios, particular attention should be given to the release of sediment plumes that may affect deep-sea environments and the water column. It is, therefore, vital to create standards and guidelines for sustainable mining practices.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Biomarcadores , Catalasa/genética , Ecosistema , Minería , Mytilus/genética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Environ Monit Assess ; 194(1): 11, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34877637

RESUMEN

Among the environmental emerging concern rare earth elements, lanthanum (La) is one of the most common and reactive. Lanthanum is widely used in numerous modern technologies and applications, and its intense usage results in increasing discharges into the environment, with potentially deleterious consequences to earthlings. Therefore, we exposed the important food resource and powerful monitoring tool Manila clam to two environmentally relevant concentrations of La (0.3 µg L-1 and 0.9 µg L-1) for 6 days, through water, to assess the bioaccumulation pattern in the gills, digestive gland, and remaining body. The La bioaccumulation was measured after 1 (T1), 2 (T2), and 6 (T6) days of exposure. Lanthanum was bioaccumulated after 2 days, and the levels increased in all tissues in a dose-dependent manner. When exposed to 0.3 µg L-1, the enrichment factor pattern was gills > body > digestive gland. However, when exposed to 0.9 µg L-1, the pattern appears to change to gills > digestive gland > body. Tissue portioning appears to be linked with exposed concentration: In higher exposure levels, digestive gland seems to gain importance, probably associated with detoxification mechanisms. Here, we describe for the first time La bioaccumulation in these different tissues in a bivalve species. Future studies dealing with the bioaccumulation and availability of La should connect them with additional water parameters (such as temperature, pH, and major cations).


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Branquias/química , Lantano/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Environ Res ; 191: 110051, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818498

RESUMEN

Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 µg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.


Asunto(s)
Anguilla , Animales , Anguilas , Europa (Continente) , Humanos , Lantano/toxicidad , Temperatura
4.
Planta ; 247(2): 289-300, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29218421

RESUMEN

MAIN CONCLUSION: Cistus ladanifer has a well-defined taxonomic identity. 2,2,6-trimethylcyclohexanone may be an authenticity and taxonomic marker. Its traits and applications make it a possible economic resource fitted for Mediterranean areas. Cistus ladanifer is a dominant shrub species endemic to the western Mediterranean region. Due to its dominant nature and its potential ecological, aromatic or pharmacological applications, C. ladanifer has been the object of numerous studies. In this review current knowledge on different aspects of this species is summarized, from its taxonomy to its chemical characterisation or its competitive traits. There are no doubts about the taxonomic entity of C. ladanifer, although the recognition of infraspecific taxa deserves more attention. Given that the fragrant exudate of C. ladanifer holds a very specific composition, one species specific carotenoid, 2,2,6-trimethylcyclohexanone, derivative is proposed as an authenticity marker for uses of C. ladanifer in pharmacological or aromatic industries. Evidence is also gathered on the extreme adaptation of C. ladanifer to stressful conditions in the Mediterranean region, such as the ability to survive in low hydric and high solar exposition conditions, presistence in poor and contaminated soils, and growth inhibition of several other plants through the release of allelochemicals. Thus, the finding of potential applications for this plant may contribute to enhance the economic dimension of derelict lands, such as mine tailings or poor agricultural Mediterranean areas.


Asunto(s)
Cistus/química , Cistus/clasificación , Cistus/genética , Ecología , Ecosistema , Región Mediterránea , Recursos Naturales , Filogenia
5.
Planta ; 248(6): 1351-1364, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30232598

RESUMEN

MAIN CONCLUSION: The combination of genotypic selection, targeted and improved cultivation, and processing techniques for specific applications gives C. ladanifer the potential to be used as a valuable resource in Mediterranean areas with poor agronomic advantages. Cistus ladanifer (rockrose) is a perennial shrub, well adapted to the Mediterranean climate and possibly to upcoming environmental changes. As a sequence to a thorough review on taxonomic, morphological, chemical and competitive aspects of C. ladanifer, the research team focuses here on the economic potential of C. ladanifer: from production to applications, highlighting also known biological activities of extracts and their compounds. The use of this natural resource may be a viable solution for poor and contaminated soils with no need for large agricultural techniques, because this species is highly resistant to pests, diseases and extreme environmental factors. In addition, this species reveals interesting aptitudes that can be applied to food, pharmaceutical, phytochemical and biofuel industries. The final synthesis highlights research lines toward the exploitation of this neglected resource, such as selection of plant lines for specific applications and development of agronomic and processing techniques.


Asunto(s)
Cistus/fisiología , Fitoquímicos , Agricultura , Biodegradación Ambiental , Biocombustibles , Cistus/anatomía & histología , Cistus/química , Cistus/clasificación , Alimentos , Región Mediterránea , Plantas Medicinales , Semillas/anatomía & histología , Semillas/química , Semillas/clasificación , Semillas/fisiología
6.
Mol Biol Rep ; 45(5): 1405-1412, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30109548

RESUMEN

In Opuntia spp., the cladode tissues contain many polysaccharides and secondary metabolites that interfere with obtaining high-quality deoxyribonucleic acid (DNA), using currently available methods. To circumvent this problem, three commercial kits, three modified versions of the conventional cetyltrimethylammonium bromide method (CTAB) method and one combined method were tested in Opuntia ficus-indica, O. robusta, O. dillenii and O. elata species. We obtained a rapid and simple protocol that allows the extraction of DNA from all the tested species with good DNA yield and purity, namely, the combined method. With this method (DNeasy® Plant Mini Kit combined with the CTAB method), DNA yields from 13.2 ± 7.8 to 15.9 ± 11.3 µg g-1 of fresh tissue were obtained in the four Opuntia species. The purity, evaluated by the ratio A260/A280 ratio, ranged from 1.67 ± 0.12 to 2.01 ± 0.25, revealing low levels of problematic metabolites. The extracted DNA quality was confirmed by amplifying a set of nuclear microsatellites obtained for the genus. Reliable reproducible bands and electropherogram profiles were obtained. The combined method has potential to be universal for good-quality DNA extraction in cacti, particularly in the Opuntia genus and other difficult-to-extract species.


Asunto(s)
ADN/aislamiento & purificación , Opuntia/química , Opuntia/genética , Cetrimonio/química , Extractos Vegetales/química , Polisacáridos/química
7.
Clin Endocrinol (Oxf) ; 86(2): 243-246, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27474100

RESUMEN

OBJECTIVE: Polymorphisms in the thyroid transcription factor forkhead factor E1 (FOXE1) gene have been implicated in the genetic susceptibility to differentiated thyroid cancer, but little is known about their effect on tumour characteristics. The objective of this study was to determine the contribution of the FOXE1 polyalanine repeat region to the susceptibility to thyroid cancer and to its clinical characteristics. DESIGN, PATIENTS AND MEASUREMENTS: A total of 500 patients with sporadic thyroid cancer (440 papillary and 60 follicular thyroid carcinoma) and 502 healthy controls were included in this case-control association study. The number of FOXE1 alanine repeats in each subject was determined by PCR and multiplex fragment analysis by capillary electrophoresis. FOXE1 genotype and allele frequencies among groups were compared by logistic regression and adjusted for sex and age at diagnosis. Data were analysed according to cancer subtype, tumour size and the presence of lymph node or distant metastasis. RESULTS: FOXE1 alleles with 16 or more alanine repeats were more frequent in patients with tumour size > 1 cm compared to tumour size ≤ 1 cm (adjusted OR 1·44; 95% CI 1·05-1·88; P = 0·019). Genotypes containing at least one allele with 16 or more alanine repeats were associated with larger tumour size (adjusted OR 1·71; 95% CI 1·15-2·57; P = 0·009). No significant differences were observed between cancer subtypes or the presence/absence of metastasis. CONCLUSIONS: FOXE1 polyalanine repeat polymorphisms are associated with thyroid cancer, but only for tumours larger than 1 cm, suggesting a role in disease progression.


Asunto(s)
Factores de Transcripción Forkhead/genética , Péptidos , Secuencias Repetitivas de Ácidos Nucleicos , Neoplasias de la Tiroides/genética , Adulto , Alelos , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Neoplasias de la Tiroides/patología , Carga Tumoral/genética
8.
Ecotoxicol Environ Saf ; 102: 179-86, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24530735

RESUMEN

Jumbo (or Humboldt) squid, Dosidicus gigas, is a large jet-propelled top oceanic predator off the Eastern Pacific. The present study reports, for the first time, concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb in gills, mantle and digestive gland of this powerful pelagic squid in the Gulf of California. Zinc and Cu were the most abundant elements. All elements, with the exception of As, were largely stored in digestive gland; particularly Cd that reached concentrations between 57 and 509 µg g(-1). Significant relationships between tissues were found for Co (digestive gland-gills), As (gills-mantle) and Cd (digestive gland-mantle). Proportionality of Cd concentrations between mantle and digestive gland suggested that detoxification capacity by digestive gland was insufficient to avoid the transfer of this element to mantle and other tissues. Nonetheless, Cd concentrations in the mantle were always below the regulatory limit and, therefore lack of constraints for human consumption. On the basis of the fishery landings, one may estimate that up to 1t of Cd can be annually removed by jumbo squid fisheries.


Asunto(s)
Decapodiformes/química , Oligoelementos/análisis , Animales , California , Sistema Digestivo/química , Cadena Alimentaria , Branquias/química , Océanos y Mares
9.
Ecotoxicol Environ Saf ; 104: 365-72, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24736027

RESUMEN

Concentrations of paralytic shellfish toxins (C1+2, B1, dcGTX2+3, dcSTX, GTX2+3 and STX) were determined by LC-FLD in composite samples of digestive glands of the cockle Cerastoderma edule and in each sub-cellular particulate fractions obtained after differential centrifugation (nuclei+debris, mitochondria, lysosomes and microsomes). The specimens were sampled during the exposure to a bloom of Gymnodinium catenatum (day 0) and in the subsequent 8, 12, 14, 19, 21 and 25 days under natural depuration conditions. Toxin profiles of digestive glands were dominated by C1+2 followed by B1 and dcGTX2+3, although the proportion between C1+2 and B1 contents decreased with the time, indicating a slower elimination of B1. All toxins, except GTX2+3 and STX, were quantified in the four sub-cellular fractions. The content of the quantified toxins decreased most markedly in nuclei+debris and microsomal fractions, during the first eight and 12 days, respectively. Conversely, different patterns were observed among toxins in mitochondrial and lysosomal fractions. The less accentuated decreases of dcGTX2+3 and dcSTX contents in the mitochondrial fraction may have resulted from the conversion of other toxins, like C1+2 and B1, associated with enzymatic activities in that fraction. The largest discrepancy was registered in lysosomal fraction for B1, since its content increased after eight days of post-bloom conditions. Input of B1 may come from the conversion of other toxins, like the abundant B2 and C1+2. These transformations are associated to the major role of lysosomes in the intra-cellular digestive process of materials acquired through vesicular transport.


Asunto(s)
Cardiidae/metabolismo , Toxinas Marinas/metabolismo , Animales , Cardiidae/química , Sistema Digestivo/química , Sistema Digestivo/metabolismo , Dinoflagelados/química , Toxinas Marinas/análisis , Tiempo
10.
Sci Total Environ ; 901: 166050, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37543340

RESUMEN

The accumulation of microplastics (MP) by marine species of ecological and commercial interest represents a major concern, particularly for those present in human diet. This study analysed the accumulation of MP in three species of coastal pelagic fish with high commercial value, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus) and horse mackerel (Trachurus trachurus), collected along the Western coast of the Iberian Peninsula. The gastrointestinal tract (GT), gills and muscle were analysed and a total of 504 particles were observed. MP were found in all target tissues of the studied species. Horse mackerel exhibited significantly higher concentrations of microplastics in GT compared to other tissues. On the other hand, anchovies and sardines had significantly lower microplastic concentrations in their muscle tissue. The accumulation of microplastics in the gills showed a significant difference between species, with anchovy having significantly higher concentrations compared to horse mackerel. Horse mackerel had the highest percentage of individuals with microplastics in their GT (92 %), followed by sardine (75 %) and anchovy (50 %). Horse mackerel was also the species that registered the highest percentage of individuals with particles in the muscle (63 %), followed by anchovy (40 %) and finally sardine (39 %). MP in the gills of European sardines and anchovies were similar to those found in water samples. The majority of MP found measured <0.5 mm and were blue fibers. Furthermore, the presence of MP in the GT showed a weak and moderated significant negative correlation with the Fulton Condition Index in horse mackerel and European sardine. Our study confirms the ubiquitous extent of MP contamination in the ocean and provides baseline evidence of MP tissue distribution in three small pelagic fish species with distinct feeding behaviour, while correlating this with the presence of MP in water. Importantly, the results of this study contribute to improve the understanding of biological partitioning of MP in open sea fish species with high commercial relevance, and the potential deleterious effects of our increasingly MP contaminated world.

11.
Mar Environ Res ; 190: 106064, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37344267

RESUMEN

Mola mola is the largest teleost inhabiting our ocean and the presence of microplastics (MP) in this flagship species was, before this study, never described. Thus, this investigation focused on analysing MP ingestion in 53 ocean giant sunfish in the Northeast Atlantic Ocean. A total of 116 MP were found in 79% of the specimens, with a median of 1 MP.ind-1, ranging from 0 to 11 MP.ind-1. Seasonal differences were observed, with more fibers registered in specimens caught in autumn. Among the different size classes observed, the smallest category (<300 µm) was the most frequent (43%). Blue (43%) was the most prevalent color, followed by green (29%) and black (10%). The majority of fragments were styrene acrylic copolymer (53%), while most fibers were rayon (78%). These findings emphasize that the ocean sunfish population crossing the southern waters of Portugal is exposed to microplastic pollution and highlight the need for effective management policies to address plastic pollution in marine ecosystems.


Asunto(s)
Tetraodontiformes , Contaminantes Químicos del Agua , Animales , Plásticos , Microplásticos , Ecosistema , Océano Atlántico , Ingestión de Alimentos , Monitoreo del Ambiente
12.
Sci Total Environ ; 876: 162557, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898539

RESUMEN

Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Ecosistema , Monitoreo del Ambiente , Cosméticos/análisis , Preparaciones Farmacéuticas
13.
Sci Total Environ ; 856(Pt 2): 159077, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181822

RESUMEN

Microplastics (<5 mm) are a ubiquitous marine pollutant which are highly bioavailable to marine organisms across all trophic levels. Marine predators are especially vulnerable to microplastic pollution through direct and indirect ingestion (e.g., trophic transfer) due to their high trophic position. In particular, oceanic islands are more susceptible to plastic accumulation, increasing the relative number of microplastics in the environment that are available for consumption. The dynamics of microplastic accumulation in marine predators inhabiting remote islands, however, is sparsely documented. Here we describe microplastic exposure in the Critically Endangered Mediterranean monk seal (Monachus monachus) from the Madeira archipelago (Northeast Atlantic) using scat-based analysis. Microplastics were recovered from 18 scat samples collected between 2014-2021 and were characterized to the polymer level using Fourier-Transform Infrared (u-FTIR) spectroscopy. A total of 390 microplastic particles were recovered, ranging between 0.2-8.6 particles g-1 dry weight (mean 1.84 ± 2.14 particles g-1) consisting mainly of fragments (69 %) of various sizes and polymer composition (e.g., PE, PET, PS). Microplastic prevalence (100 % of samples analysed) was higher than what has been previously recorded using scat-based analysis in other pinniped species. Our results suggest that the levels of microplastic pollution in the coastal food-web in the Madeira archipelago are relatively high, placing higher-trophic level organisms at increased risk of microplastic consumption, including humans. This study provides the first insights into microplastic exposure to Madeira's monk seals that may contribute to future management decisions for the species and their long-term survival.


Asunto(s)
Phocidae , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Plásticos/análisis , Cadena Alimentaria , Polímeros , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
14.
Environ Sci Pollut Res Int ; 30(48): 105675-105684, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715912

RESUMEN

With the growing interest to exploit mineral resources in the deep-sea, there is the need to establish guidelines and frameworks to support hazard and risk assessment schemes. The present study used a subtidal species of filter-feeding bivalve, the clam Spisula solida, as a proxy to better understand the impacts of sediment plumes in marine organisms under hyperbaric conditions. Four concentrations of suspended sediments (0 g/L, 1 g/L, 2 g/L, and 4 g/L) were used in a mixture with different grain sizes at 4 Bar for 96 h. Functional (filtration rate-FR) and biochemical endpoints (catalase-CAT, glutathione s-transferase-GST, and lipid peroxidation-LPO) were analyzed in the gonads, digestive gland, and gills of S. solida after a 96-h exposure at 4 Bar (the natural limit of the species vertical distribution). The FR showed a decreasing trend with the increasing sediment concentrations (significant effects at 2 and 4 g/L). Additionally, significant changes were observed for some of the tested oxidative stress biomarkers, which were concentration and tissue-dependent, i.e., CAT activity was significantly elevated in gills (1 g/L treatment), and GST was decreased in digestive gland (1 g/L treatment). Overall, the results show that suspended sediments, at 2 and 4 g/L, have negative functional impacts in the bivalve S. solida providing additional insights to improve hazard assessment of deep-sea mining. These findings represent a step forward to ensure the mitigation of the potential negative effects of deep-sea resource exploitation.


Asunto(s)
Bivalvos , Spisula , Contaminantes Químicos del Agua , Animales , Spisula/metabolismo , Catalasa/metabolismo , Estrés Oxidativo , Digestión , Peroxidación de Lípido , Branquias/metabolismo , Contaminantes Químicos del Agua/química , Biomarcadores/metabolismo , Glutatión Transferasa/metabolismo
15.
Mar Pollut Bull ; 191: 114902, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058834

RESUMEN

Industrial deep-sea mining will release plumes containing metals that may disperse over long distances; however, there is no general understanding of metal effects on marine ecosystems. Thus, we conducted a systematic review in search of models of metal effects on aquatic biota with the future perspective to support Environmental Risk Assessment (ERA) of deep-sea mining. According to results, the use of models to study metal effects is strongly biased towards freshwater species (83% freshwater versus 14% marine); Cu, Hg, Al, Ni, Pb, Cd and Zn are the best-studied metals, and most studies target few species rather than entire food webs. We argue that these limitations restrain ERA on marine ecosystems. To overcome this gap of knowledge, we suggest future research directions and propose a modelling framework to predict the effects of metals on marine food webs, which in our view is relevant for ERA of deep-sea mining.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadena Alimentaria , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Metales , Metales Pesados/análisis
16.
Ecotoxicol Environ Saf ; 85: 96-103, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22938960

RESUMEN

Dredging operations in harbours are recurrent to maintain accessibility and navigational depths. One of the main environmental risks of these operations is the remobilization of contaminants trapped in the sediments, rendering them more bioavailable to the biota. However, regulatory policies regarding the contamination risk of dredging chiefly apply to the disposal of dredged materials rather than the direct impact of the procedure itself. In order to assess the ecotoxicological risk of harbour dredging operations in a polluted estuary (the Tagus, W Portugal), the present study compared bioaccumulation and biomarker responses in field-deployed mussels before and after the beginning of operations, complemented by sediment characterization and risk analysis based on standardized sediment quality guidelines. The results revealed a very significant increase in genotoxicity and oxidative stress from the beginning of dredging onwards, which was accompanied by increased bioaccumulation of toxicants, especially polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Overall, the results indicate the importance of surveying the direct impacts of these procedures on local contamination, especially considering these sediments had been previously classified as "trace contaminated", according to normative guidelines, and therefore safe for disposal. This study shows the importance of obtaining both chemical and biological data in standard monitoring procedures and that the remobilization of contaminants by dredging operations may be grossly underestimated, which calls for caution when assessing the impact of these activities even in low to moderately polluted areas.


Asunto(s)
Monitoreo del Ambiente/métodos , Mytilus edulis/metabolismo , Bifenilos Policlorados/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Biomarcadores/análisis , Ensayo Cometa , Daño del ADN , Ecotoxicología , Estuarios , Sedimentos Geológicos/química , Sustancias Peligrosas/metabolismo , Sustancias Peligrosas/toxicidad , Mytilus edulis/efectos de los fármacos , Estrés Oxidativo , Bifenilos Policlorados/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Portugal , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad
17.
J Trace Elem Med Biol ; 71: 126957, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35227975

RESUMEN

Studies dealing with Rare Earth Elements (REE) ecotoxicological behavior are scattered and with potential conflicting results. Climate change impacts on aquatic biota and is known to modify contaminants toxicokinetic. Nevertheless, the current knowledge on the potential interactions between climate change and REE is virtually non-existent. Therefore, we focus our research on La and Gd as representatives of Light and Heavy REE that also are of great environmental concern. Experiments on different mediums (fresh-, brackish- and seawater) were designed to run at present-day and near-future conditions (T°=+4 °C, pH=△-0.4). Sampling was taken at different time scales from minutes to hours for one day. The main challenge was to evaluate the availability of La and Gd under environmental conditions closely related to climate changes scenarios. Furthermore, this study will contribute to the baseline knowledge by which future research towards understanding REE patterns and toxicity will build upon. Lanthanum and Gd behave differently with salinity. Temperature also affects the availability of dissolved La in freshwater. On the other hand, pH reduction causes the decrease of Gd in freshwater. In this medium, concentrations reduce sharply, presumably due to sorption processes or precipitates. In the brackish water experiment only the dissolved La levels in the Warming (T°=+4 °C) and Warming & Acidification (T°=+4 °C, pH=△0.4) diminished significantly through time. Dissolved La and Gd levels in seawater were relatively constant with time. The speciation of both elements is also of great relevance for ecotoxicological experiments. The trivalent free ions (La3+ and Gd3+) were the most common species in the trials. However, as ionic strength increases, the availability of other complexes rose, which should be subject of great attention for upcoming ecotoxicological studies.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Gadolinio/análisis , Lantano/toxicidad , Lantano/análisis , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales de Tierras Raras/análisis
18.
Mar Pollut Bull ; 181: 113911, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35816821

RESUMEN

Potassium hydroxide (KOH) digestion protocols are currently applied to separate microplastics from biological samples, allowing efficient digestion with minor degradation of polymers in a time- and cost-effective way. For biota samples with high-fat content, KOH reacts with triglycerides generating an overlying soap layer, making difficult the digestion and solubilization and subsequent microplastics extraction. Here we studied the addition of Tween-20 in different concentrations to evaluate the effect on the soap layer of post-digested samples. Addition of 10 % of Tween-20 presented higher flow rate during filtration, being set as optimal value. Incorporation of Tween-20 in the extraction procedure increased recovery rates of LDPE, PC and PET and appears to have a protective effect on PC and PET degradation. Tween-20 did not interfere in FTIR spectrum of polymers available in the marine environment. Being low-toxic, makes addition of Tween-20 a simple and economical way to optimize KOH digestion protocols for microplastics extraction.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Tracto Gastrointestinal/química , Plásticos/metabolismo , Polímeros , Polisorbatos , Jabones , Contaminantes Químicos del Agua/análisis
19.
Mar Pollut Bull ; 175: 113335, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35093785

RESUMEN

Increased Rare earth elements (REE) usage culminates in discharges into the environment. Mussels have been chosen as models in biomonitoring, hence, REE concentrations in Mytilus galloprovincialis from six locations on the Portuguese coast were accessed to determine natural concentrations and possible linkage to local ecosystem characteristics and temporal variations, by determining them in distinct seasons (autumn and spring). Samples from Porto Brandão (located on the south bank of the Tagus estuary) exhibited the highest REE concentrations, while mussels from Aljezur (the southernmost point on the Portuguese coast) exhibited the lowest, in both seasons. Overall, ∑REE concentration was greater in the spring. LREE enrichment relative to HREE occurs and a negative Ce and Eu anomaly was observed. This study constitutes the first assessment of REE composition on this model species in the Portuguese coast, in two distinct seasons and contributes to a better understanding of REE uptake for future biomonitoring studies.


Asunto(s)
Metales de Tierras Raras , Mytilus , Animales , Monitoreo Biológico , Ecosistema , Monitoreo del Ambiente , Metales de Tierras Raras/análisis , Portugal , Estaciones del Año
20.
Chemosphere ; 302: 134850, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35551939

RESUMEN

Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 µg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.


Asunto(s)
Bivalvos , Spisula , Contaminantes Químicos del Agua , Animales , Cambio Climático , Concentración de Iones de Hidrógeno , Lantano/toxicidad , Océanos y Mares , Agua de Mar , Superóxido Dismutasa , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA