Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Card Fail ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582256

RESUMEN

BACKGROUND: Data collected via wearables may complement in-clinic assessments to monitor subclinical heart failure (HF). OBJECTIVES: Evaluate the association of sensor-based digital walking measures with HF stage and characterize their correlation with in-clinic measures of physical performance, cardiac function and participant reported outcomes (PROs) in individuals with early HF. METHODS: The analyzable cohort included participants from the Project Baseline Health Study (PBHS) with HF stage 0, A, or B, or adaptive remodeling phenotype (without risk factors but with mild echocardiographic change, termed RF-/ECHO+) (based on available first-visit in-clinic test and echocardiogram results) and with sufficient sensor data. We computed daily values per participant for 18 digital walking measures, comparing HF subgroups vs stage 0 using multinomial logistic regression and characterizing associations with in-clinic measures and PROs with Spearman's correlation coefficients, adjusting all analyses for confounders. RESULTS: In the analyzable cohort (N=1265; 50.6% of the PBHS cohort), one standard deviation decreases in 17/18 walking measures were associated with greater likelihood for stage-B HF (multivariable-adjusted odds ratios [ORs] vs stage 0 ranging from 1.18-2.10), or A (ORs vs stage 0, 1.07-1.45), and lower likelihood for RF-/ECHO+ (ORs vs stage 0, 0.80-0.93). Peak 30-minute pace demonstrated the strongest associations with stage B (OR vs stage 0=2.10; 95% CI:1.74-2.53) and A (OR vs stage 0=1.43; 95% CI:1.23-1.66). Decreases in 13/18 measures were associated with greater likelihood for stage-B HF vs stage A. Strength of correlation with physical performance tests, echocardiographic cardiac-remodeling and dysfunction indices and PROs was greatest in stage B, then A, and lowest for 0. CONCLUSIONS: Digital measures of walking captured by wearable sensors could complement clinic-based testing to identify and monitor pre-symptomatic HF.

2.
JMIR Hum Factors ; 10: e48270, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535417

RESUMEN

BACKGROUND: Mobility is a meaningful aspect of an individual's health whose quantification can provide clinical insights. Wearable sensor technology can quantify walking behaviors (a key aspect of mobility) through continuous passive monitoring. OBJECTIVE: Our objective was to characterize the analytical performance (accuracy and reliability) of a suite of digital measures of walking behaviors as critical aspects in the practical implementation of digital measures into clinical studies. METHODS: We collected data from a wrist-worn device (the Verily Study Watch) worn for multiple days by a cohort of volunteer participants without a history of gait or walking impairment in a real-world setting. On the basis of step measurements computed in 10-second epochs from sensor data, we generated individual daily aggregates (participant-days) to derive a suite of measures of walking: step count, walking bout duration, number of total walking bouts, number of long walking bouts, number of short walking bouts, peak 30-minute walking cadence, and peak 30-minute walking pace. To characterize the accuracy of the measures, we examined agreement with truth labels generated by a concurrent, ankle-worn, reference device (Modus StepWatch 4) with known low error, calculating the following metrics: intraclass correlation coefficient (ICC), Pearson r coefficient, mean error, and mean absolute error. To characterize the reliability, we developed a novel approach to identify the time to reach a reliable readout (time to reliability) for each measure. This was accomplished by computing mean values over aggregation scopes ranging from 1 to 30 days and analyzing test-retest reliability based on ICCs between adjacent (nonoverlapping) time windows for each measure. RESULTS: In the accuracy characterization, we collected data for a total of 162 participant-days from a testing cohort (n=35 participants; median observation time 5 days). Agreement with the reference device-based readouts in the testing subcohort (n=35) for the 8 measurements under evaluation, as reflected by ICCs, ranged between 0.7 and 0.9; Pearson r values were all greater than 0.75, and all reached statistical significance (P<.001). For the time-to-reliability characterization, we collected data for a total of 15,120 participant-days (overall cohort N=234; median observation time 119 days). All digital measures achieved an ICC between adjacent readouts of >0.75 by 16 days of wear time. CONCLUSIONS: We characterized the accuracy and reliability of a suite of digital measures that provides comprehensive information about walking behaviors in real-world settings. These results, which report the level of agreement with high-accuracy reference labels and the time duration required to establish reliable measure readouts, can guide the practical implementation of these measures into clinical studies. Well-characterized tools to quantify walking behaviors in research contexts can provide valuable clinical information about general population cohorts and patients with specific conditions.

3.
JMIR Biomed Eng ; 8: e43726, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38875664

RESUMEN

BACKGROUND: Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings can provide critical insights into health status. OBJECTIVE: This study's aim was to develop and evaluate the analytical validity and transdemographic generalizability of an algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring technology. METHODS: Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7 million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out testing data sets, overall and in demographically stratified subgroups. RESULTS: The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI 0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant performance differences across subgroups. CONCLUSIONS: Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with generalizability across demographic subgroups. The validated algorithm can effectively quantify users' walking activity and help researchers gain insights on users' health status.

4.
Parkinsonism Relat Disord ; 109: 105355, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905719

RESUMEN

INTRODUCTION: Few late-stage clinical trials in Parkinson's disease (PD) have produced evidence on the clinical validity of sensor-based digital measurements of daily life activities to detect responses to treatment. The objective of this study was to assess whether digital measures from patients with mild-to-moderate Lewy Body Dementia demonstrate treatment effects during a randomized Phase 2 trial. METHODS: Substudy within a 12-week trial of mevidalen (placebo vs 10, 30, or 75 mg), where 70/344 patients (comparable to the overall population) wore a wrist-worn multi-sensor device. RESULTS: Treatment effects were statistically significant by conventional clinical assessments (Movement Disorder Society-Unified Parkinson's Disease Rating Scale [MDS-UPDRS] sum of Parts I-III and Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change [ADCS-CGIC] scores) in the full study cohort at Week 12, but not in the substudy. However, digital measurements detected significant effects in the substudy cohort at week 6, persisting to week 12. CONCLUSIONS: Digital measurements detected treatment effects in a smaller cohort over a shorter period than conventional clinical assessments. TRIAL REGISTRATION: clinicaltrials.gov, NCT03305809.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Muñeca , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/diagnóstico
5.
Sci Rep ; 13(1): 3600, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918552

RESUMEN

Continuous, objective monitoring of motor signs and symptoms may help improve tracking of disease progression and treatment response in Parkinson's disease (PD). This study assessed the analytical and clinical validity of multi-sensor smartwatch measurements in hospitalized and home-based settings (96 patients with PD; mean wear time 19 h/day) using a twice-daily virtual motor examination (VME) at times representing medication OFF/ON states. Digital measurement performance was better during inpatient clinical assessments for composite V-scores than single-sensor-derived features for bradykinesia (Spearman |r|= 0.63, reliability = 0.72), tremor (|r|= 0.41, reliability = 0.65), and overall motor features (|r|= 0.70, reliability = 0.67). Composite levodopa effect sizes during hospitalization were 0.51-1.44 for clinical assessments and 0.56-1.37 for VMEs. Reliability of digital measurements during home-based VMEs was 0.62-0.80 for scores derived from weekly averages and 0.24-0.66 for daily measurements. These results show that unsupervised digital measurements of motor features with wrist-worn sensors are sensitive to medication state and are reliable in naturalistic settings.Trial Registration: Japan Pharmaceutical Information Center Clinical Trials Information (JAPIC-CTI): JapicCTI-194825; Registered June 25, 2019.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Japón , Tecnología
6.
NPJ Digit Med ; 5(1): 65, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606508

RESUMEN

Sensor-based remote monitoring could help better track Parkinson's disease (PD) progression, and measure patients' response to putative disease-modifying therapeutic interventions. To be useful, the remotely-collected measurements should be valid, reliable, and sensitive to change, and people with PD must engage with the technology. We developed a smartwatch-based active assessment that enables unsupervised measurement of motor signs of PD. Participants with early-stage PD (N = 388, 64% men, average age 63) wore a smartwatch for a median of 390 days. Participants performed unsupervised motor tasks both in-clinic (once) and remotely (twice weekly for one year). Dropout rate was 5.4%. Median wear-time was 21.1 h/day, and 59% of per-protocol remote assessments were completed. Analytical validation was established for in-clinic measurements, which showed moderate-to-strong correlations with consensus MDS-UPDRS Part III ratings for rest tremor (⍴ = 0.70), bradykinesia (⍴ = -0.62), and gait (⍴ = -0.46). Test-retest reliability of remote measurements, aggregated monthly, was good-to-excellent (ICC = 0.75-0.96). Remote measurements were sensitive to the known effects of dopaminergic medication (on vs off Cohen's d = 0.19-0.54). Of note, in-clinic assessments often did not reflect the patients' typical status at home. This demonstrates the feasibility of smartwatch-based unsupervised active tests, and establishes the analytical validity of associated digital measurements. Weekly measurements provide a real-life distribution of disease severity, as it fluctuates longitudinally. Sensitivity to medication-induced change and improved reliability imply that these methods could help reduce sample sizes needed to demonstrate a response to therapeutic interventions or disease progression.

7.
NPJ Digit Med ; 4(1): 53, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742069

RESUMEN

Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA