Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 21(1): 605-611, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33350840

RESUMEN

We present a strong coupling system realized by coupling the localized surface plasmon mode in individual silver nanogrooves and propagating surface plasmon modes launched by periodic nanogroove arrays with varied periodicities on a continuous silver medium. When the propagating modes are in resonance with the localized mode, we observe a √N scaling of Rabi splitting energy, where N is the number of propagating modes coupled to the localized mode. Here, we confirm a giant Rabi splitting on the order of 450-660 meV (N = 2) in the visible spectral range, and the corresponding coupling strength is 160-235 meV. In some of the strong coupling cases studied by us, the coupling strength is about 10% of the mode energy, reaching the ultrastrong coupling regime.

2.
Nano Lett ; 21(6): 2596-2602, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33689382

RESUMEN

Non-Hermitian photonic systems with gains and/or losses have recently emerged as a powerful approach for topology-protected optical transport and novel device applications. To date, most of these systems employ coupled optical systems of diffraction-limited dielectric waveguides or microcavities, which exchange energy spatially or temporally. Here, we introduce a diffraction-unlimited approach using a plasmon-exciton coupling (polariton) system with tunable plasmonic resonance (energy and line width) and coupling strength. By designing a chirped silver nanogroove cavity array and coupling a single tungsten disulfide monolayer with a large contrast in resonance line width, we show the tuning capability through energy level anticrossing and plasmon-exciton hybridization (line width crossover), as well as spontaneous symmetry breaking across the exceptional point at zero detuning. This two-dimensional hybrid material system can be applied as a scalable and integratable platform for non-Hermitian photonics, featuring seamless integration of two-dimensional materials, broadband tuning, and operation at room temperature.

3.
Nanoscale ; 12(46): 23809-23816, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237103

RESUMEN

Aluminum is a plasmonic material well known for its excellent stability, complementary metal-oxide-semiconductor compatibility and wide availability as compared to popular plasmonic materials such as gold and silver. Aluminum can support surface plasmon resonances in a broad spectral range, including the deep ultra-violet, a regime where no other plasmonic materials can work. However, conventional aluminum films suffer from high losses in the visible region and low fidelity and reproducibility in nanofabrication, making aluminum plasmonics non-ideal for applications. Herein, we report the experimental results of consistent surface plasmon propagation length measurements for epitaxially grown aluminum and silver films (epifilms), using three different methods (white light interferometry, laser scattering and spectroscopic ellipsometry) in the full visible spectrum. In order to avoid losses caused by inferior material quality, we used single-crystalline aluminum and silver films for direct comparison. We found that, on directly comparing with the silver epifilm, the aluminum epifilm possesses reasonably long plasmon propagation lengths in the full visible range and outperforms silver in the deep blue region. These results illustrate the great potential of epitaxial aluminum films for visible-spectrum plasmonic applications, resulting from their superior crystallinity and excellent surface and interface properties.

4.
ACS Nano ; 14(7): 8838-8845, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32589398

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive technique to identify vibrational fingerprints of trace analytes. However, present SERS techniques suffer from the lack of uniform, reproducible, and stable substrates to control the plasmonic hotspots in a wide spectral range. Here, we report the promising application of epitaxial aluminum films as a scalable plasmonic platform for SERS applications. To assess the uniformity of aluminum substrates, atomically thin transition metal dichalcogenide monolayers are used as the benchmark analyte due to their inherent two-dimensional homogeneity. Besides the distinctive spectral capability of aluminum in the ultraviolet (325 nm), we demonstrate that the aluminum substrates can even perform comparably with the silver counterparts made from single-crystalline colloidal silver crystals using the same SERS substrate design in the visible range (532 nm). This is unexpected from the prediction solely based on optical dielectric functions and illustrate the superior surface and interface properties of epitaxial aluminum SERS substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA