Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
3.
BMC Genomics ; 16: 332, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25896921

RESUMEN

BACKGROUND: Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. RESULTS: Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. CONCLUSIONS: These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.


Asunto(s)
Celulasa/genética , Isópteros/genética , Lignina/metabolismo , Transcriptoma/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Isópteros/enzimología , Lignina/química , Glycine max/química , Glycine max/metabolismo , Zea mays/química , Zea mays/metabolismo
4.
Insect Biochem Mol Biol ; 149: 103843, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113709

RESUMEN

Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.


Asunto(s)
Thysanoptera , Tospovirus , Animales , Femenino , Flores , Masculino , Enfermedades de las Plantas , Plantas , Proteoma/metabolismo , Proteómica , Glándulas Salivales , Thysanoptera/metabolismo , Tospovirus/fisiología
5.
Life (Basel) ; 10(8)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784674

RESUMEN

Proteins are crucial players of biological interactions within and between the organisms and thus it is important to understand the role of proteins in successful partnerships, such as insect vectors and their plant viruses. Proteomic approaches have identified several proteins at the interface of virus acquisition and transmission by their insect vectors which could be potential molecular targets for sustainable pest and viral disease management strategies. Here we review the proteomic techniques used to study the interactions of insect vector and plant virus. Our review will focus on the techniques available to identify the infection, global changes at the proteome level in insect vectors, and protein-protein interactions of insect vectors and plant viruses. Furthermore, we also review the integration of other techniques with proteomics and the available bioinformatic tools to analyze the proteomic data.

6.
Genes (Basel) ; 11(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138242

RESUMEN

Insect salivary glands play an important role for host feeding, specifically by secreting salivary proteins for digestion and potentially modulating host defenses. Compared to other hemipterans, the significance of salivary glands is less studied in the black-faced leafhopper, Graminella nigrifrons, a crop pest that vectors several agronomically important plant viruses. To identify functionally important genes in the salivary glands of the black-faced leafhopper, we compared transcriptomes between adult salivary glands (SG) and the remaining carcasses. We identified 14,297 salivary gland-enriched transcripts and 195 predicted secretory peptides (i.e., with a signal peptide and extracellular localization characteristics). Overall, the SG transcriptome included functions such as 'oxidoreduction', 'membrane transport', and 'ATP-binding', which might be important for the fundamental physiology of this tissue. We further evaluated transcripts with potential contributions in host feeding using RT-qPCR. Two SG-enriched transcripts (log2 fold change > 5), GnP19 and GnE63 (a putative calcium binding protein), were significantly upregulated in maize-fed adults relative to starved adults, validating their importance in feeding. The SG-enriched transcripts of the black-faced leafhopper could play a potential role for interacting with maize and could be targets of interest for further functional studies and improve pest control and disease transmission.


Asunto(s)
Hemípteros/genética , Hemípteros/virología , Insectos Vectores/genética , Insectos Vectores/virología , Virus de Plantas/patogenicidad , Glándulas Salivales/metabolismo , Animales , Perfilación de la Expresión Génica , Genes de Insecto , Hemípteros/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Zea mays/virología
7.
Artículo en Inglés | MEDLINE | ID: mdl-23499941

RESUMEN

The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-µ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-µ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles.


Asunto(s)
Escarabajos/enzimología , Glutatión Transferasa/genética , Animales , ARN Mensajero/genética
8.
J Insect Physiol ; 57(6): 819-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21439289

RESUMEN

Phytophagous insects frequently encounter reactive oxygen species (ROS) from exogenous and endogenous sources. To overcome the effect of ROS, insects have evolved a suite of antioxidant defense genes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). The emerald ash borer (Agrilus planipennis Fairmaire), an exotic invasive insect pest from Asia has killed millions of ash trees and continues to invade North America at a rapid pace. From an on-going expressed sequence tag (EST) project of A. planipennis larval tissues, we identified ESTs coding for a Cu-Zn SOD (ApSOD1), a CAT (ApCAT1) and a GPX (ApGPX1). A multiple sequence alignment of the derived A. planipennis sequences revealed high homology with other insect sequences at the amino acid level. Phylogenetic analysis of ApSOD1 grouped it with Cu-Zn SODs of other insect taxa. Quantitative real time PCR (qRT-PCR) analysis in different larval tissues (midgut, fat body, Malpighian tubule and cuticle) revealed high mRNA levels of ApCAT1 in the midgut. Interestingly, high mRNA levels for both ApSOD1 and ApGPX1 were observed in the Malpighian tubules. Assay of mRNA levels in developmental stages (larva, prepupa and adults) by qRT-PCR indicated high transcript levels of ApCAT1 and ApGPX1 in larval and prepupal stages with a decline in adults. On the other hand, the transcript levels of ApSOD1 were observed to be constitutive in all the developmental stages assayed. Results obtained reflect a plausible role of these A. planipennis antioxidant genes in quenching ROS from both diet (ash allelochemicals) as well as endogenous sources. These studies further help in understanding the adaptation/invasiveness of A. planipennis.


Asunto(s)
Antioxidantes/metabolismo , Escarabajos/enzimología , Escarabajos/genética , Fraxinus/parasitología , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Escarabajos/química , Escarabajos/metabolismo , Etiquetas de Secuencia Expresada , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Enfermedades de las Plantas/parasitología , Alineación de Secuencia
9.
J Vis Exp ; (39)2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20445495

RESUMEN

Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1(st)-, 2(nd)-, 3(rd)-, 4(th)-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.


Asunto(s)
Escarabajos/genética , Perfilación de la Expresión Génica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Fraxinus/parasitología , ARN Mensajero/análisis , ARN Mensajero/genética
10.
PLoS One ; 5(10): e13708, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060843

RESUMEN

BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.


Asunto(s)
Escarabajos/genética , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Animales , Etiquetas de Secuencia Expresada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA