Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Mol Life Sci ; 80(1): 35, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622452

RESUMEN

Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease. Here, we show peroxynitrite nitrates CXCL8 and thereby regulates neutrophil migration and activation. The nitrated chemokine was unable to induce transendothelial neutrophil migration in vitro and failed to promote leukocyte recruitment in vivo. This reduced activity is due to impairment in both G protein-coupled receptor signaling and glycosaminoglycan binding. Using a novel antibody, nitrated CXCL8 was detected in bronchoalveolar lavage samples from patients with pneumonia. These findings were validated by mass spectrometry. Our results provide the first direct evidence of chemokine nitration in human pathophysiology and suggest a natural mechanism that limits acute inflammation.


Asunto(s)
Interleucina-8 , Ácido Peroxinitroso , Humanos , Quimiocinas/metabolismo , Inflamación/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Leucocitos/metabolismo , Neutrófilos , Ácido Peroxinitroso/farmacología
2.
Biochem J ; 478(5): 1009-1021, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33463672

RESUMEN

Chemokines Cxcl1/KC and Cxcl2/MIP2 play a crucial role in coordinating neutrophil migration to the insult site. Chemokines' recruitment activity is regulated by monomer-dimer equilibrium and binding to glycosaminoglycans (GAGs). GAG chains exist as covalently linked to core proteins of proteoglycans (PGs) and also as free chains due to cleavage by heparanases during the inflammatory response. Compared with free GAGs, binding to GAGs in a PG is influenced by their fixed directionality due to covalent linkage and restricted mobility. GAG interactions impact chemokine monomer/dimer levels, chemotactic and haptotactic gradients, life time, and presentation for receptor binding. Here, we show that Cxcl1 and Cxcl2 also form heterodimers. Using a disulfide-trapped Cxcl1-Cxcl2 heterodimer, we characterized its binding to free heparin using nuclear magnetic resonance and isothermal titration calorimetry, and to immobilized heparin and heparan sulfate using surface plasmon resonance. These data, in conjunction with molecular docking, indicate that the binding characteristics such as geometry and stoichiometry of the heterodimer are different between free and immobilized GAGs and are also distinctly different from those of the homodimers. We propose that the intrinsic asymmetry of the heterodimer structure, along with differences in its binding to PG GAGs and free GAGs, regulate chemokine function.


Asunto(s)
Quimiocina CXCL1/química , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/química , Quimiocina CXCL2/metabolismo , Heparina/química , Heparina/metabolismo , Multimerización de Proteína , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Transducción de Señal
3.
J Biol Chem ; 294(43): 15650-15661, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31455633

RESUMEN

Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.


Asunto(s)
Quimiocinas/química , Quimiocinas/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Sulfatos de Condroitina/química , Dermatán Sulfato/química , Heparitina Sulfato/química , Modelos Moleculares , Unión Proteica , Espectroscopía de Protones por Resonancia Magnética
4.
Pediatr Res ; 87(5): 847-852, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31756731

RESUMEN

BACKGROUND: Fetal swallowing of human amniotic fluid (hAF) containing trophic factors (TFs) promotes gastrointestinal tract (GIT) development. Preterm birth interrupts hAF swallowing, which may increase the risk of necrotizing enterocolitis (NEC). Postnatally, it is difficult to replicate fetal swallowing of hAF due to volume. We aimed to evaluate whether hAF lyophilization is feasible and its effect on hAF-borne TFs. METHODS: We collected hAF (n = 16) from uncomplicated pregnancies. hAF was divided into three groups: unprocessed control (C), concentration by microfiltration (F), and by dialysis and lyophilization (L). EGF, HGF, GM-CSF, and TGF-α were measured in each group by multiplex assay. Bioavailability of TFs was measured by proliferation and LPS-induced IL-8 production by intestinal epithelial cells FHs74. RESULTS: After dialysis/lyophilization, GM-CSF and TGF-α were preserved with partial loss of EGF and HGF. hAF increased cell proliferation and reduced LPS-induced IL-8 production compared to medium alone. Compared to control, dialysis/lyophilization and filtration of hAF increased FHs74 cell proliferation (p < 0.001) and decreased LPS-induced IL-8 production (p < 0.01). CONCLUSIONS: Lyophilization and filtration of hAF is feasible with partial loss of TFs but maintains and even improves bioavailability of TFs measured by proliferation and LPS-induced IL-8 production by FHs74.


Asunto(s)
Líquido Amniótico/metabolismo , Enterocolitis Necrotizante/metabolismo , Liofilización , Tracto Gastrointestinal/embriología , Líquido Amniótico/química , Proliferación Celular , Criopreservación , Deglución , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inflamación , Interleucina-8/metabolismo , Embarazo , Factor de Crecimiento Transformador alfa/metabolismo
5.
J Biol Chem ; 293(46): 17817-17828, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30257866

RESUMEN

Keratinocyte-derived chemokine (KC or mCXCL1) and macrophage inflammatory protein 2 (MIP2 or mCXCL2) play nonredundant roles in trafficking blood neutrophils to sites of infection and injury. The functional responses of KC and MIP2 are intimately coupled to their interactions with glycosaminoglycans (GAGs). GAG interactions orchestrate chemokine concentration gradients and modulate receptor activity, which together regulate neutrophil trafficking. Here, using NMR, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we characterized the molecular basis of KC and MIP2 binding to the GAG heparin. Both chemokines reversibly exist as monomers and dimers, and the NMR analysis indicates that the dimer binds heparin with higher affinity. The ITC experiments indicate a stoichiometry of two GAGs per KC or MIP2 dimer and that the enthalpic and entropic contributions vary significantly between the two chemokine-heparin complexes. NMR-based structural models of heparin-KC and heparin-MIP2 complexes reveal that different combinations of residues from the N-loop, 40s turn, ß3-strand, and C-terminal helix form a binding surface within a monomer and that both conserved residues and residues unique to a particular chemokine mediate the binding interactions. MD simulations indicate significant residue-specific differences in their contribution to binding and affinity for a given chemokine and between chemokines. On the basis of our observations that KC and MIP2 bind to GAG via distinct molecular interactions, we propose that the differences in these GAG interactions lead to differences in neutrophil recruitment and play nonoverlapping roles in resolution of inflammation.


Asunto(s)
Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Heparina/metabolismo , Animales , Sitios de Unión , Calorimetría , Quimiocina CXCL1/química , Quimiocina CXCL2/química , Heparina/química , Enlace de Hidrógeno , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Termodinámica
6.
Biochemistry ; 57(41): 5969-5977, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30230320

RESUMEN

Hydrogen-bonding and ionic interactions play fundamental roles in macromolecular recognition and function. In contrast to lysines and arginines, how histidines mediate these interactions is less well-understood due to the unique properties of its side chain imidazole that include an aromatic ring with two titratable nitrogens, a p Ka that can vary significantly, and the ability to exist in three distinct forms: protonated imidazolium and two tautomeric neutral (Nδ1 and Nε2) states. Here, we characterized the structural features of histidines in the chemokines CXCL8 and CXCL1 in the free, GAG heparin-bound, and CXCR2 receptor N-terminal domain-bound states using solution NMR spectroscopy. CXCL8 and CXCL1 share two conserved histidines, one in the N-loop and the other in the 30s loop. In CXCL8, both histidines exist in the Nε2 tautomeric state in the free, GAG-bound, and receptor-bound forms. On the other hand, in unliganded CXCL1, each of the two histidines exists in two states, as the neutral Nε2 tautomer and charged imidazolium. Further, both histidines exclusively exist as the imidazolium in the GAG-bound and as the Nε2 tautomer in the receptor-bound forms. The N-loop histidine alone in both chemokines is involved in direct GAG and receptor interactions, indicating the role of the 30s loop varies between the chemokines. Our observation that the structural features of conserved histidines and their functional role in two related proteins can be quite different is novel. We further propose that directly probing the imidazole structural features is essential to fully appreciate the molecular basis of histidine function.


Asunto(s)
Quimiocina CXCL1/química , Heparina/química , Interleucina-8/química , Receptores de Interleucina-8B/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
7.
Xenotransplantation ; 25(2): e12385, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29427404

RESUMEN

BACKGROUND: Human neutrophils are sequestered by pig lung xenografts within minutes during ex vivo perfusion. This phenomenon is not prevented by pig genetic modifications that remove xeno-antigens or added human regulatory molecules intended to down-regulate activation of complement and coagulation pathways. This study investigated whether recipient and donor interleukin-8 (IL-8), a chemokine known to attract and activate neutrophils during inflammation, is elaborated in the context of xenogeneic injury, and whether human or pig IL-8 promote the adhesion of human neutrophils in in vitro xenograft models. METHODS: Plasma levels of pig, human or non-human primate (NHP) IL-8 from ex vivo pig lung perfusion experiments (n = 10) and in vivo pig-to-baboon lung transplantation in baboons (n = 22) were analysed by ELISA or Luminex. Human neutrophils stimulated with human or pig IL-8 were analysed for CD11b expression, CD18 activation, oxidative burst and adhesion to resting or TNF-activated endothelial cells (EC) evaluated under static and flow (Bioflux) conditions. For some experiments, human neutrophils were incubated with Reparixin (IL-8/CXCL8 receptor blocker) and then analysed as in the in vitro experiments mentioned above. RESULTS: Plasma levels of pig IL-8 (~6113 pg/mL) increased more than human (~1235 pg/mL) between one and four hours after initiation of ex vivo lung perfusion. However, pig IL-8 levels remained consistently low (<60 pg/mL) and NHP IL-8 plasma levels increased by ~2000 pg/mL after four hours in a pig-to-baboon lung xenotransplantation. In vitro, human neutrophils' CD11b expression, CD18 activation and oxidative burst all increased in a dose-dependent manner following exposure to either pig or human IL-8, which also were associated with increased adhesion to EC in both static and flow conditions. Reparixin inhibited human neutrophil activation by both pig and human IL-8 in a dose-dependent fashion. At 0.1 mg/mL, Reparixin inhibited the adhesion of IL-8-activated human neutrophils to pAECs by 84 ± 2.5%. CONCLUSIONS: Pig IL-8 increased in an ex vivo model of pig-to-human lung xenotransplantation but is not detected in vivo, whereas human or NHP IL-8 is elevated to a similar degree in both models. Both pig and human IL-8 activate human neutrophils and increase their adhesion to pig aortic ECs, a process significantly inhibited by the addition of Reparixin to human neutrophils. This work implicates IL-8, whether of pig or human origin, as a possible factor mediating in lung xenograft inflammation and injury and supports the evaluation of therapeutic targeting of this pathway in the context of xenotransplantation.


Asunto(s)
Células Endoteliales/inmunología , Xenoinjertos/metabolismo , Interleucina-8/metabolismo , Neutrófilos/inmunología , Trasplante Heterólogo , Animales , Quimiocinas/metabolismo , Humanos , Inflamación/inmunología , Papio , Porcinos
8.
Analyst ; 143(3): 635-638, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29292440

RESUMEN

Two NMR observables, the NζH3+ peak in the HISQC spectrum and Nζ chemical shift difference between the free and heparin-bound forms, can identify binding-interface lysines in protein-heparin complexes. Unlike backbone chemical shifts, these direct probes are stringent and are less prone to either false positives or false negatives.


Asunto(s)
Heparina/química , Lisina/análisis , Espectroscopía de Resonancia Magnética , Secuencia de Aminoácidos , Quimiocina CXCL1/química , Quimiocina CXCL5/química , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína
9.
Molecules ; 23(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384436

RESUMEN

Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S²). However, on average, S² are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-µs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions.


Asunto(s)
Interleucina-8/química , Complejos Multiproteicos/química , Receptores de Interleucina-8A/química , Termodinámica , Secuencia de Aminoácidos/genética , Humanos , Interleucina-8/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos/genética , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Receptores de Interleucina-8A/genética
10.
J Biol Chem ; 291(8): 4247-55, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26721883

RESUMEN

In humans, the chemokine CXCL1/MGSA (hCXCL1) plays fundamental and diverse roles in pathophysiology, from microbial killing to cancer progression, by orchestrating the directed migration of immune and non-immune cells. Cellular trafficking is highly regulated and requires concentration gradients that are achieved by interactions with sulfated glycosaminoglycans (GAGs). However, very little is known regarding the structural basis underlying hCXCL1-GAG interactions. We addressed this by characterizing the binding of GAG heparin oligosaccharides to hCXCL1 using NMR spectroscopy. Binding experiments under conditions at which hCXCL1 exists as monomers and dimers indicate that the dimer is the high-affinity GAG ligand. NMR experiments and modeling studies indicate that lysine and arginine residues mediate binding and that they are located in two non-overlapping domains. One domain, consisting of N-loop and C-helical residues (defined as α-domain) has also been identified previously as the GAG-binding domain for the related chemokine CXCL8/IL-8. The second domain, consisting of residues from the N terminus, 40s turn, and third ß-strand (defined as ß-domain) is novel. Eliminating ß-domain binding by mutagenesis does not perturb α-domain binding, indicating two independent GAG-binding sites. It is known that N-loop and N-terminal residues mediate receptor activation, and we show that these residues are also involved in extensive GAG interactions. We also show that the GAG-bound hCXCL1 completely occlude receptor binding. We conclude that hCXCL1-GAG interactions provide stringent control over regulating chemokine levels and receptor accessibility and activation, and that chemotactic gradients mediate cellular trafficking to the target site.


Asunto(s)
Quimiocina CXCL1/química , Glicosaminoglicanos/química , Modelos Moleculares , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína
11.
J Biol Chem ; 291(39): 20539-50, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27471273

RESUMEN

Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, ß3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function.


Asunto(s)
Quimiocina CXCL5/química , Heparina/química , Simulación de Dinámica Molecular , Oligosacáridos/química , Multimerización de Proteína , Quimiocina CXCL1/química , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Heparina/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oligosacáridos/metabolismo , Estructura Secundaria de Proteína
12.
Int J Mol Sci ; 18(3)2017 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-28245630

RESUMEN

CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG). CXCL7 exists as monomers and dimers, and dimerization (~50 µM) and CXCR2 binding (~10 nM) constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR) spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd) that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.


Asunto(s)
Heparina/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Receptores de Interleucina-8B/química , beta-Tromboglobulina/química , Secuencia de Aminoácidos , Sitios de Unión , Heparina/metabolismo , Humanos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Multimerización de Proteína , Receptores de Interleucina-8B/metabolismo , Relación Estructura-Actividad , beta-Tromboglobulina/metabolismo
13.
Int J Mol Sci ; 18(4)2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368308

RESUMEN

Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a "trapped" disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.


Asunto(s)
Glicosaminoglicanos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Multimerización de Proteína , beta-Tromboglobulina/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Calcio/metabolismo , Quimiocina CXCL1/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Glicosaminoglicanos/metabolismo , Células HL-60 , Heparina/química , Heparina/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Oligosacáridos/química , Oligosacáridos/metabolismo , Factor Plaquetario 4/química , Factor Plaquetario 4/genética , Factor Plaquetario 4/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
14.
Int J Mol Sci ; 18(8)2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28771176

RESUMEN

The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.


Asunto(s)
Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Receptores de Quimiocina/metabolismo , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología
15.
Biochem J ; 472(1): 121-33, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371375

RESUMEN

Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function.


Asunto(s)
Glicosaminoglicanos/química , Interleucina-8/química , Espectroscopía de Resonancia Magnética/métodos , Multimerización de Proteína , Secuencia de Aminoácidos , Sitios de Unión/genética , Glicosaminoglicanos/metabolismo , Heparina/química , Heparina/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Soluciones
16.
Biochemistry ; 54(32): 5113-9, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26223367

RESUMEN

Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Glicosaminoglicanos/metabolismo , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , ADN Bacteriano/genética , Decorina/metabolismo , Variación Genética , Heparina/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
17.
Biochim Biophys Acta ; 1838(1 Pt A): 69-77, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23747362

RESUMEN

Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.


Asunto(s)
Calorimetría/métodos , Proteínas de la Membrana/química , Detergentes/química , Ligandos , Termodinámica
18.
J Biol Chem ; 288(35): 25143-25153, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23864653

RESUMEN

Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 µm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of "active" chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.


Asunto(s)
Quimiocina CXCL1/química , Heparina/química , Modelos Moleculares , Multimerización de Proteína , Sustitución de Aminoácidos , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Células HL-60 , Heparina/metabolismo , Humanos , Ratones , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estabilidad Proteica
19.
J Biol Chem ; 288(17): 12244-52, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479735

RESUMEN

The CXCL1/CXCR2 axis plays a crucial role in recruiting neutrophils in response to microbial infection and tissue injury, and dysfunction in this process has been implicated in various inflammatory diseases. Chemokines exist as monomers and dimers, and compelling evidence now exists that both forms regulate in vivo function. Therefore, knowledge of the receptor activities of both CXCL1 monomer and dimer is essential to describe the molecular mechanisms by which they orchestrate neutrophil function. The monomer-dimer equilibrium constant (~20 µm) and the CXCR2 binding constant (1 nm) indicate that WT CXCL1 is active as a monomer. To characterize dimer activity, we generated a trapped dimer by introducing a disulfide across the dimer interface. This disulfide-linked CXCL1 dimer binds CXCR2 with nanomolar affinity and shows potent agonist activity in various cellular assays. We also compared the receptor binding mechanism of this dimer with that of a CXCL1 monomer, generated by deleting the C-terminal residues that stabilize the dimer interface. We observe that the binding interactions of the dimer and monomer to the CXCR2 N-terminal domain, which plays an important role in determining affinity and activity, are essentially conserved. The potent activity of the CXCL1 dimer is novel: dimers of the CC chemokines CCL2 and CCL4 are inactive, and the dimer of the CXC chemokine CXCL8 (which is closely related to CXCL1) is marginally active for CXCR1 but shows variable activity for CXCR2. We conclude that large differences in dimer activity among different chemokine-receptor pairs have evolved for fine-tuned leukocyte function.


Asunto(s)
Quimiocina CXCL1/metabolismo , Leucocitos/metabolismo , Multimerización de Proteína/fisiología , Receptores de Interleucina-8B/agonistas , Quimiocina CXCL1/química , Quimiocina CXCL1/genética , Células HL-60 , Humanos , Leucocitos/citología , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
20.
J Biol Chem ; 288(17): 11621-7, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23447529

RESUMEN

Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized (15)N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear (1)H-(15)N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ~17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules.


Asunto(s)
Proteína HMGB1/sangre , Saliva/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Semivida , Humanos , Cinética , Masculino , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA