Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(11): 3853-3871, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30662006

RESUMEN

The nonlysosomal glucosylceramidase ß2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren-like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein-protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.


Asunto(s)
Ataxia Cerebelosa/metabolismo , Locomoción/genética , Mutación con Pérdida de Función , Paraplejía Espástica Hereditaria/metabolismo , beta-Glucosidasa/metabolismo , Animales , Biocatálisis , Ataxia Cerebelosa/genética , Glucosilceramidasa , Humanos , Ratones , Ratones Noqueados , Paraplejía Espástica Hereditaria/genética , Especificidad de la Especie , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/deficiencia , beta-Glucosidasa/genética
2.
J Biol Chem ; 292(15): 6177-6189, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28258214

RESUMEN

The lysosomal acid ß-glucosidase GBA1 and the non-lysosomal ß-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of ß-glucosidase activity in general.


Asunto(s)
Regulación hacia Abajo , Enfermedad de Gaucher/enzimología , Regulación Enzimológica de la Expresión Génica , Modelos Biológicos , Esfingosina/metabolismo , beta-Glucosidasa/biosíntesis , Animales , Línea Celular , Enfermedad de Gaucher/genética , Glucosilceramidasa , Glucosilceramidas/genética , Glucosilceramidas/metabolismo , Humanos , Masculino , Ratones , Esfingosina/genética , beta-Glucosidasa/genética
3.
Cells ; 8(7)2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252584

RESUMEN

Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.


Asunto(s)
AMP Cíclico/metabolismo , Optogenética/métodos , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Animales , Pruebas de Enzimas , Luz , Masculino , Ratones , Ratones Transgénicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/efectos de la radiación , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA