RESUMEN
Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Homeostasis , Metilación , Schizosaccharomyces/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/metabolismoRESUMEN
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Asunto(s)
Exonucleasas/metabolismo , Exosomas/metabolismo , ARN Largo no Codificante/genética , Schizosaccharomyces/genética , Análisis de Secuencia de ARN/métodos , Núcleo Celular/metabolismo , Citoplasma/enzimología , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , Meiosis , Anotación de Secuencia Molecular , Mutación , Interferencia de ARN , Estabilidad del ARN , ARN de Hongos/genética , ARN Largo no Codificante/química , Schizosaccharomyces/química , Schizosaccharomyces/enzimologíaRESUMEN
Next-generation sequencing approaches have considerably advanced our understanding of genome function and regulation. However, the knowledge of gene function and complex cellular processes remains a challenge and bottleneck in biological research. Phenomics is a rapidly emerging area, which seeks to rigorously characterize all phenotypes associated with genes or gene variants. Such high-throughput phenotyping under different conditions can be a potent approach toward gene function. The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic model organism that is increasingly used for genomewide screens and phenomic assays. In this review, we highlight current large-scale, cell-based approaches used with S. pombe, including computational colony-growth measurements, genetic interaction screens, parallel profiling using barcodes, microscopy-based cell profiling, metabolomic methods and transposon mutagenesis. These diverse methods are starting to offer rich insights into the relationship between genotypes and phenotypes.
Asunto(s)
Genoma Viral , Fenotipo , Schizosaccharomyces/genética , Aminoácidos/metabolismo , Elementos Transponibles de ADN , Metabolómica , Modelos Biológicos , Mutagénesis , Schizosaccharomyces/clasificaciónRESUMEN
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was â¼ 0.24% in wild type and â¼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Asunto(s)
Exones , Genoma Fúngico , ARN Nuclear/genética , Schizosaccharomyces/genética , Empalme Alternativo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Meiosis , ARN/genética , ARN/metabolismo , ARN Circular , ARN Nuclear/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN , TranscriptomaRESUMEN
Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pinpointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns. LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq pipelines.
Asunto(s)
Algoritmos , Mapeo Cromosómico , Intrones , Motivos de Nucleótidos , Empalme del ARN , Secuencias Reguladoras de Ácidos Nucleicos , Secuencia de Bases , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Exones , Eliminación de Gen , Perfilación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Posición Específica de Matrices de Puntuación , Precursores del ARN/genética , ARN de Hongos/genética , Schizosaccharomyces/genética , Transcripción Genética , TranscriptomaRESUMEN
2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odr1, encoding an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dog1 and Dog2 phosphatases which dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypa1, pas1 and pho7 In liquid medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S. pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG resistance differ between budding and fission yeasts.
Asunto(s)
Antimetabolitos/metabolismo , Desoxiglucosa/metabolismo , Farmacorresistencia Fúngica , Genes Fúngicos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Eliminación de Gen , Expresión Génica , Pruebas Genéticas , Schizosaccharomyces/crecimiento & desarrolloRESUMEN
Integrins act at signalling crossroads, and their interactions with other signal transduction pathways are key to the regulation of normal and pathological cell cytoarchitecture and behaviour. Here, we describe a signalling cascade that acts during the formation of the defining segmental features of the vertebrate body - the somites - in which ß1-integrin activity regulates epithelialisation by controlling downstream Wnt and Notch activity crucial for somite border formation. Using in vivo transcriptional inhibition in the developing chick embryo, we show that ß1-integrin in the anterior presomitic mesoderm activates canonical Wnt signalling in a cell-autonomous, `outside-inside' manner. Signalling is mediated by integrin-linked kinase (ILK), leading to modulation of glycogen synthase kinase 3ß (GSK3ß) phosphorylation, and activates Notch signalling in the anterior presomitic mesoderm. The two signalling pathways then cooperate to promote somite formation via cMESO1/Mesp2. Our results show that ß1-integrin can regulate cell shape and tissue morphogenesis indirectly, by regulation of downstream signalling cascades.
Asunto(s)
Integrina beta1/fisiología , Receptores Notch/metabolismo , Somitos/embriología , Proteínas Wnt/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión de Pollo , Técnicas de Cultivo de Embriones , Técnicas de Silenciamiento del Gen , Integrina beta1/genética , Modelos Biológicos , Organogénesis/genética , Organogénesis/fisiología , Receptores Notch/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Somitos/metabolismo , Proteínas Wnt/fisiologíaRESUMEN
Although reported in the literature, ribosome heterogeneity is a phenomenon whose extent and implications in cell and organismal biology is not fully appreciated. This has been the case due to the lack of the appropriate techniques and approaches. Heterogeneity can arise from alternative use and differential content of protein and RNA constituents, as well as from post-transcriptional and post-translational modifications. In the few examples we have, it is apparent that ribosomal heterogeneity offers an additional level and potential for gene expression regulation and might be a way towards tuning metabolism, stress, and growth programs to external and internal stimuli and needs. Here, we introduce ribosome biogenesis and discuss ribosomal heterogeneity in various reported occasions. We conclude that a systematic approach in multiple organisms will be needed to delineate this biological phenomenon and its contributions to growth, aging, and disease. Finally, we discuss ribosome mutations and their roles in disease.
RESUMEN
23. Akirtava, C.; May, G.E.; McManus, C.J. False-Positive IRESes from Hoxa9 andOther Genes Resulting from Errors in Mam-malian 5' UTR Annotations [...].
RESUMEN
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Schizosaccharomyces , Proteínas Quinasas Activadas por AMP/metabolismo , Saccharomyces cerevisiae/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/metabolismo , Autofagia/fisiologíaRESUMEN
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Chaperonas de Histonas/genética , División Celular , Proteínas de Ciclo Celular/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Cellular models such as yeasts are a driving force in biogerontology studies. Their simpler genome, short lifespans and vast genetic and genomics resources make them ideal to characterise pro-ageing and anti-ageing genes and signalling pathways. Over the last three decades, yeasts have contributed to the understanding of fundamental aspects of lifespan regulation including the roles of nutrient response, global protein translation rates and quality, DNA damage, oxidative stress, mitochondrial function and dysfunction as well as autophagy. In this short review, we focus on approaches used for competitive and non-competitive cell-based screens using the budding yeast Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe, for deciphering the molecular mechanisms underlying chronological ageing. Automation accompanied with appropriate computational tools allowed manipulation of hundreds of thousands of colonies, generation, processing and analysis of genome-wide lifespan data. Together with barcoding and modern mutagenesis technologies, these approaches have allowed to take decisive steps towards a global, comprehensive view of cellular ageing.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Longevidad/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMEN
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Envejecimiento/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Longevidad/fisiología , Ratones , NutrientesRESUMEN
Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival.
Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , SchizosaccharomycesRESUMEN
Amino acid deprivation or supplementation can affect cellular and organismal life span, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino acid levels during chronological aging of nondividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological life span of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the life span of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular life span.
Asunto(s)
Aminoácidos/metabolismo , Schizosaccharomyces/metabolismo , Ácido Aspártico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glutamina/metabolismo , Mutación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de SeñalRESUMEN
Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.
Asunto(s)
Longevidad , Proteostasis , Longevidad/genética , Filogenia , Biosíntesis de Proteínas , Proteostasis/genética , Saccharomyces cerevisiae/genéticaRESUMEN
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Asunto(s)
Envejecimiento/patología , Autofagia , Longevidad , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/metabolismo , Animales , Humanos , Transducción de SeñalRESUMEN
The widely consumed neuroactive compound caffeine has generated much interest due to its ability to override the DNA damage and replication checkpoints. Previously Rad3 and its homologues was thought to be the target of caffeine's inhibitory activity. Later findings indicate that the Target of Rapamycin Complex 1 (TORC1) is the preferred target of caffeine. Effective Cdc2 inhibition requires both the activation of the Wee1 kinase and inhibition of the Cdc25 phosphatase. The TORC1, DNA damage, and environmental stress response pathways all converge on Cdc25 and Wee1. We previously demonstrated that caffeine overrides DNA damage checkpoints by modulating Cdc25 stability. The effect of caffeine on cell cycle progression resembles that of TORC1 inhibition. Furthermore, caffeine activates the Sty1 regulated environmental stress response. Caffeine may thus modulate multiple signalling pathways that regulate Cdc25 and Wee1 levels, localisation and activity. Here we show that the activity of caffeine stabilises both Cdc25 and Wee1. The stabilising effect of caffeine and genotoxic agents on Wee1 was dependent on the Rad24 chaperone. Interestingly, caffeine inhibited the accumulation of Wee1 in response to DNA damage. Caffeine may modulate cell cycle progression through increased Cdc25 activity and Wee1 repression following DNA damage via TORC1 inhibition, as TORC1 inhibition increased DNA damage sensitivity.
RESUMEN
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Transactivadores/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Mutación/genética , Naftiridinas/farmacología , Sistemas de Lectura Abierta/genética , Unión Proteica/efectos de los fármacos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Transcriptoma/genéticaRESUMEN
Intense research in the areas of cellular and organismal aging using diverse laboratory model systems has enriched our knowledge in the processes and the signalling pathways involved in normal and pathological conditions. The field finds itself in a position to take decisive steps towards clinical applications and interventions not only for targeted age-related diseases such as cardiovascular conditions and neurodegeneration but also for the modulation of health span and lifespan of a whole organism. Beyond nutritional interventions such as dietary restriction without malnutrition and various regimes of intermittent fasting, accumulating evidence provides promise for pharmacological interventions. The latter, mimic caloric or dietary restriction, tune cellular and organismal stress responses, affect the metabolism of microbiome with subsequent effects on the host or modulate repair pathways, among others. In this mini review, we summarise some of the evidence on drugs that can alter organismal lifespan and the prospects they might offer for promoting healthspan and delaying age-related diseases.