Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Opt Lett ; 49(7): 1753-1756, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560854

RESUMEN

Current or magnetic field sensing is usually achieved by exploiting the Faraday effect of an optical material combined with an interferometric probe that provides the sensitivity. Being interferometric in nature, such sensors are typically sensitive to several other environmental parameters such as vibrations and mechanical disturbances, which, however, inevitably impose the inaccuracy and instability of the detection. Here we demonstrate a polarimetric fiber optic current sensor based on orbital angular momentum modes of an air-core optical fiber. In the fiber, spin-orbit interactions imply that the circular birefringence, which is sensitive to applied currents or resultant magnetic fields, is naturally resilient to mechanical vibrations. The sensor, which effectively measures polarization rotation at the output of a fiber in a magnetic field, exhibits high linearity in the measured signal versus the applied current that induces the magnetic field, with a sensitivity of 0.00128 rad/A and a noise limit of 1×10-5/H z. The measured polarization varies within only ±0.1% under mechanical vibrations with the frequency of up to 800 Hz, validating the robust environmental performance of the sensor.

2.
Opt Express ; 30(15): 26967-26974, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236878

RESUMEN

Stimulated Raman scattering is a particularly robust nonlinearity, occurring in virtually every material because its spectral linewidth and associated frequency shift do not typically depend on phases or directions (i.e. wavevectors) of the interacting light beams. In amorphous materials such as glass fibers, Raman bandwidths are large, enabling its use as a broadband gain element. This ubiquity makes it a versatile means for achieving optical amplification or realizing lasers over a large range of pulsewidths at user-defined colors. However, this ease of deploying the effect also presents itself as a stubborn source of noise in fiber-based quantum sources or parasitic emission in fiber lasers. Here, we show that orbital angular momentum carrying light beams experiencing spin-orbit interactions yield novel phase-matching criteria for Raman scattering. This enables tailoring its spectral shape (by over half the Raman shift in a given material) as well as strength (by ∼ 100×) simply by controlling light's topological charge - a capability of utility across the multitude of applications where modulating Raman scattering is desired.

3.
Opt Express ; 30(16): 29708-29721, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299139

RESUMEN

The strength of stimulated Brillouin scattering (SBS) in optical fibers is largely governed by the spatial overlap between supported optical and acoustic modes, leading to a complicated amalgamation of photon-phonon interactions in multimode fibers. Here, we study SBS dynamics in ring-core fibers that support modes carrying orbital angular momentum (OAM), which result in distinctive characteristics. We find that the OAM SBS response, as well as modal content, strongly depends on the polarization state of the pump, as OAM modes in fiber have distinct propagation dynamics depending on whether the input is circularly or linearly polarized. This is in contrast to conventionally posited wisdom that SBS strength is independent of the pump's input polarization state in an isotropic material. This increased specificity can lead to interesting effects such as spatial phase conjugation even in the presence of stably transmitted, i.e. non-aberrated, spatial pump modes. More generally, we show that using OAM modes yields additional degrees of control over SBS interactions beyond more conventional parameters, such as effective area, acousto-optic spatial overlaps, and material composition.

4.
Opt Express ; 28(3): 4333-4339, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122087

RESUMEN

We demonstrate an energetic dual-wavelength ultrashort pulsed source by exploiting the inherent features of the newly discovered process of soliton self-mode conversion (SSMC) in a multimode fiber. The generated pulses are at wavelengths of 1205 nm and 1273 nm, respectively, and the pulse energies are approximately 30 nJ. The natural group-velocity-locking feature of SSMC ensures minimal relative timing jitter, hence highlighting the utility of exploiting the new degrees of freedom afforded by field of multimode nonlinear fiber optics. The relative timing jitter is evaluated by measuring the power fluctuations of generated sum-frequency signals. When compared to a conventional fiber based dual-wavelength source based on traditional frequency-shifted solitons, the relative timing jitter is found to be reduced by greater than 11 dB. Since this process is wavelength-agnostic within the transparency window of optical fibers, our source provides an attractive means of achieving integrated multi-color ultrashort pulse sources for a variety of applications.

5.
Opt Express ; 27(7): 9725-9732, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045121

RESUMEN

Cascaded Raman fiber lasers based on random distributed feedback (RDFB) are proven to be wavelength agile, enabling high powers outside rare-earth doped emission windows. In these systems, by simply adjusting the input pump power and wavelength, high-power lasers can be achieved at any wavelength within the transmission window of optical fibers. However, there are two primary limitations associated with these systems, which in turn limits further power scaling and applicability. Firstly, the degree of wavelength conversion or spectral purity (percentage of output power in the desired wavelength band) that can be achieved is limited. This is attributed to intensity noise transfer of input pump source to Raman Stokes orders, which causes incomplete power transfer reducing the spectral purity. Secondly, the output power range over which the high degree of wavelength conversion is maintained is limited. This is due to unwanted Raman conversion to the next Stokes order with increasing power. Here, we demonstrate a high-power, cascaded Raman fiber laser with near complete wavelength conversion over a wide wavelength and power range. We achieve this by culmination of two recent developments in this field. We utilize our recently proposed filtered feedback mechanism to terminate Raman conversion at arbitrary wavelengths, and we use the recently demonstrated technique (by J Dong and associates) of low-intensity noise pump sources (Fiber ASE sources) to achieve high-purity Raman conversion. Pump-limited output powers >34W and wavelength conversions >97% (highest till date) were achieved over a broad - 1.1µm to 1.5µm tuning range. In addition, high spectral purity (>90%) was maintained over a broad output power range (>15%), indicating the robustness of this laser against input power variations.

6.
Opt Express ; 27(7): 9829-9837, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045141

RESUMEN

Single-pixel cameras reconstruct images from a stream of spatial projection measurements recorded with a single-element detector, which itself has no spatial resolution. This enables the creation of imaging systems that can take advantage of the ultra-fast response times of single-element detectors. Here we present a single-pixel camera with a temporal resolution of 200 ps in the visible and short-wave infrared wavelengths, used here to study the transit time of distinct spatial modes transmitted through few-mode and orbital angular momentum mode conserving optical fiber. Our technique represents a way to study the spatial and temporal characteristics of light propagation in multimode optical fibers, which may find use in optical fiber design and communications.

7.
Opt Lett ; 44(2): 279-282, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644880

RESUMEN

The cascaded Raman fiber laser is a proven technology that provides wavelength agile high-power fiber lasers outside the rare-earth emission windows. However, conventional cascaded Raman fiber lasers lack wavelength agility due to the use of fixed wavelength fiber Bragg gratings. Recently, proposed cascaded Raman fiber lasers based on random distributed feedback have provided a grating-free solution enabling wavelength agility. With these lasers, wide wavelength tunability has been achieved. However, there are still limitations in scaling output power while maintaining high spectral purity of wavelength conversion. Spectral purity is characterized by the in-band power ratio, which is the ratio of the output power in the required wavelength to the total power. The origin of this limitation arises from the inability to efficiently terminate the Raman cascade at a specific wavelength with increasing power. In this Letter, we propose a novel filtered distributed feedback mechanism to terminate the Raman cascade at any desired wavelength, enabling power scaling with high spectral purity. Output power up to 28 W has been achieved with >85% in-band power ratio and >400 nm tuning range from 1118 to 1535 nm.

8.
Opt Express ; 26(18): 23295-23304, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184983

RESUMEN

We report the first demonstration of Raman amplification in a fiber of a single Bessel-like higher order mode using a multimode pump source. We amplify the LP08-mode with a 559-µm2 effective mode area at a signal wavelength of 1115 nm in a pure-silica-core step-index fiber. A maximum of 18 dB average power gain is achieved in a 9-m long gain fiber, with output pulse energy of 115 µJ. The Raman pump source comprises a pulsed 1060 nm ytterbium-doped fiber amplifier with V-value ~30, which is matched to the Raman gain fiber. The pump depletion as averaged over the signal pulses reaches 36.7%. The conversion of power from the multimode pump into the signal mode demonstrates the potential for efficient brightness enhancement with low amplification-induced signal mode purity degradation.

9.
Opt Express ; 26(16): 20225-20232, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119335

RESUMEN

Simultaneous MIMO-free transmission of 12 orbital angular momentum (OAM) modes over a 1.2 km air-core fiber is demonstrated. WDM compatibility of the system is shown by using 60, 25 GHz spaced WDM channels with 10 GBaud QPSK signals. System performance is evaluated by measuring bit error rates, which are found to be below the soft FEC limit, and limited by inter-modal crosstalk. The crosstalk in the system is analyzed, and it is concluded that it can be significantly reduced with an improved multiplexer and de-multiplexer.

10.
Opt Lett ; 43(17): 4108-4111, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160728

RESUMEN

Optical fiber links and networks are integral components within and between cities' communication infrastructures. Implementing quantum cryptographic protocols on either existing or new fiber links will provide information-theoretical security to fiber data transmissions. However, there is a need for ways to increase the channel bandwidth. Using the transverse spatial degree of freedom is one way to transmit more information and increase tolerable error thresholds by extending the common qubit protocols to high-dimensional quantum key distribution (QKD) schemes. Here we use one type of vortex fiber where the transverse spatial modes serves as an additional channel to encode quantum information by structuring the spin and orbital angular momentum of light. In this proof-of-principle experiment, we show that two-dimensional structured photons can be used in such vortex fibers in addition to the common two-dimensional polarization encryption, thereby paving the path to QKD multiplexing schemes.

11.
Opt Lett ; 42(13): 2531-2534, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957277

RESUMEN

Dispersion control is a critical functionality required in systems involving ultra-short (∼100 fs) pulses, and we demonstrate the use of chirped long-period fiber gratings for this purpose. The operation principles of this device share many attributes with the more established fiber Bragg grating technology for dispersion compensation, but with the added benefit of record low loss (0.2 dB) and the potential of being free from group-delay ripple distortions. The bandwidth of the transmissive grating device we demonstrate exceeds 12 nm, and it provides +52 fs/nm of dispersion in the 1 µm wavelength range. This corresponds to the capability of compensating the dispersion of ∼100 fs pulses in approximately meter-long single mode fibers.

12.
Phys Rev Lett ; 118(8): 083601, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28282159

RESUMEN

The interaction of spin and intrinsic orbital angular momentum of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in a cylindrically symmetric isotropic optical fiber. Such rotations occur in a straight few-mode fiber when superpositions of two modes with parallel and antiparallel orientation of spin and intrinsic orbital angular momentum (IOAM=2ℏ) are excited, resulting from a degeneracy splitting of the propagation constants of the modes.

13.
Opt Express ; 24(17): 18938-47, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557175

RESUMEN

Enabled by an enhanced effective index separation (Δneff = 1.7 × 10-4) and low transmission loss (0.8dB/km), OAM states are propagated over 13.4km in an air core fiber using a recirculating fiber loop. We observe that intermodal crosstalk decreases rapidly with increasing effective index separation, Δneff, and an order of magnitude lower crosstalk may be achieved just by doubling Δneff. We find that, in agreement with coupled power theory, our fiber has mode coupling properties analogous to elliptical core PM fibers, which yield ~10 × or more lower crosstalk than for conventional LP fiber mode orders with the same Δneff. This confirms that, for OAM modes, birefringent perturbations rather than shape perturbations matter most. In the process of performing the loop experiment, we demonstrate that OAM states in these fibers can be preserved with low loss (≤ 0.2dB) and low crosstalk (-15dB) while splicing distinct segments of the air-core fiber. For well-designed fibers, we demonstrate that OAM modes can travel distances relevant for large-scale data centers.

14.
Opt Express ; 23(22): 28531-45, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561123

RESUMEN

We consider the general problem of free-space beam shaping for coupling in and out of higher order modes (HOMs) in optical fibers with high purity and low loss. We compare the performance of two simple phase structures - binary phase plates (BPPs) and axicons - for converting Gaussian beams to HOMs and vice versa. Both axicons and BPPs allow for excitation of modes with high purity (>15 dB parasitic mode suppression), or conversion of HOMs to near-Gaussian beams (M2 < 1.25). Axicon coupling in single-clad fibers allows for lower loss (0.85 ± 0.1 dB) conversion than BPPs (1.7 ± 0.1 dB); but BPPs are compatible with any fiber design, and allow for rapid switching between modes. The experiments detailed here use all commercial components and fibers, allowing for a simple means to investigate the unique properties of multi-mode fibers.

15.
Opt Express ; 23(26): 33587, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26832022

RESUMEN

We correct a few typographical errors in the original manuscript.

16.
Opt Express ; 23(22): 28341-8, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561104

RESUMEN

We theoretically propose an air-core erbium doped fiber amplifier capable of providing relatively uniform gain for 12 orbital angular momentum (OAM) modes (|L| = 5, 6 and 7, where |L| is the OAM mode order) over the C-band. Amplifier performance under core pumping conditions for a uniformly doped core for each of the supported pump modes (110 in total) was separately assessed. The differential modal gain (DMG) was found to vary significantly depending on the pump mode used, and the minimum DMG was found to be 0.25 dB at 1550 nm provided by the OAM (8,1) pump mode. A tailored confined doping profile can help to reduce the pump mode dependency for core pumped operation and help to increase the number of pump modes that can support a DMG below 1 dB. For the more practical case of cladding-pumped operation, where the pump mode dependency is almost removed, a DMG of 0.25 dB and a small signal gain of >20 dB can be achieved for the 12 OAM modes across the full C-band.

17.
Opt Express ; 22(19): 23043-56, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321775

RESUMEN

We implement cross-correlated imaging in the frequency domain (fC(2)) in order to reconstruct different modes propagating in a multi-mode optical fiber, and measure their relative powers. Our system can complete measurements in under a second (950 ms), with a maximum signal to noise ratio of 25 dB. The system is capable of group-delay temporal resolution as high as 720 fs, and this number can be tailored for a variety of modal discrimination levels by choice of apodization functions and effective bandwidths of the tunable source we use. Measurements are made on a double-clad test fiber to demonstrate simultaneous reconstruction of six guided modes. Finally, the system is used to optimize alignment into the fiber under test and achieve mono-mode purity > 95%, underscoring the utility of fC(2) imaging for near-real-time modal content analysis.


Asunto(s)
Diagnóstico por Imagen/métodos , Tecnología de Fibra Óptica/instrumentación , Fibras Ópticas , Diseño de Equipo , Humanos
18.
Opt Express ; 22(6): 7320-9, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664079

RESUMEN

We theoretically and experimentally investigate the effect of imperfect vector symmetry on radially polarized beams focused by an aplanatic solid immersion lens at a numerical aperture of 3.3. We experimentally achieve circularly symmetric focused spot with a full-width-half-maximum of ~λ0/5.7 at λ0 = 1,310 nm, free-space wavelength. The tight spatial confinement and overall circular symmetry of the focused radially polarized beam are found to be sensitive to perturbations of its cylindrical polarization symmetry. The addition of a liquid crystal based variable retarder to the optical path can effectively ensure the vector symmetry and achieve circularly symmetric focused spots at such high numerical aperture conditions.

19.
Opt Express ; 21(4): 4931-44, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23482026

RESUMEN

We propose a measurement protocol and parameter estimation algorithm to recover the powers and relative phases of each of the vector modes present at the output of an optical fiber that supports the HE11, TE01, HE21, and TM01 modes. The measurements consist of polarization filtered near-field intensity images that are easily implemented with standard off-shelf components. We demonstrate the accuracy of the method on both simulated and measured data from a recently demonstrated fiber that supports stable orbital angular momentum states.


Asunto(s)
Análisis de Falla de Equipo/instrumentación , Iluminación/instrumentación , Fibras Ópticas , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo/métodos
20.
Opt Express ; 21(23): 28836-41, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514396

RESUMEN

We experimentally investigate intermodal nonlinear interactions, such as Raman scattering and four wave mixing. The fiber used is a specially designed few moded fiber, which splits the degeneracy of the first mode group, leading to stable propagation of the two full vectorial modes, TM01 and TE01. For the Raman experiments pumping occur in either the fundamental mode or the two full vectorial modes, whereas the signal is in the fundamental mode. In all three experiments approximately 40 dB of gain is achieved using 307 W of pump peak power. When pumping in either of the full vectorial modes four wave mixing is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA