Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5553, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020132

RESUMEN

The role of ocean variability is at a focal point in improving the weather and climate forecasts at different spatial and temporal scales. We study the effect of antecedent southwestern Indian Ocean mean sea level anomaly (MSLA) and sea surface temperature anomalies (SSTA) as a proxy to upper ocean heat capacitance on all India summer monsoon rainfall (AISMR) during 1993-2019. SSTA and MSLA over the southwestern Indian Ocean (SWIO) have been influenced by El Niño-Southern Oscillation (ENSO), the impact of ENSO-induced SWIO variability was low on rainfall variability over several homogeneous regions. Rainfall over northeast (NE) and North India (EI) has been modulated by ENSO-induced SSTA and MSLA over SWIO, thus effecting the total AISMR magnitude. The ENSO-induced changes in heat capacitance (SSTA and MSLA) over SWIO during antecedent months has less impact on west coast of India, central India and North India (NI) rainfall variability. The long-term trend in pre-monsoonal SSTA and MSLA over SWIO shows decreasing rainfall trend over NI, NE, and EI in the recent time. Furthermore, the cooler (warmer) anomaly over the western Indian Ocean affects rainfall variability adversely (favourably) due to the reversal of the wind pattern during the pre-monsoon period. While SSTA and MSLA are increasing in the SWIO, large-scale variability of these parameters during preceding winter and pre-monsoon months combined with surface winds could impact the inter-annual AISMR variability over homogeneous regions of India. Similarly, from an oceanic perspective, the antecedent heat capacitance over SWIO on an inter-annual time scale has been the key to the extreme monsoon rainfall variability.

2.
Sci Rep ; 10(1): 6059, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269246

RESUMEN

Flow of barotropic tidal currents over topographic features, such as continental slopes and submarine ridges, generates internal gravity waves at tidal periods known as internal tides. Amplitude of these waves are generally large near the generation regions. Analysis of Sea Surface Height (SSH) data, derived from satellite altimeter revealed the amplification of internal tides in the semidiurnal period in the north-central Bay of Bengal (BoB) (around 89[Formula: see text]E, 16[Formula: see text]N), which is about 450 km away from their generation sites. SSH signals found in the north-central BoB ([Formula: see text]3 cm) were comparable to the maximum amplitudes (2.5 to 3.5 cm) observed near their potential generation sites in the BoB such as continental slopes in the head of the bay and Andaman-Nicobar (AN) Ridge. Simulations from a high-resolution regional ocean model also confirmed the presence of large internal tide amplitude in the north-central BoB. Our study revealed that convergence of internal tides, which were generated along the concave-shaped source (continental slopes in the head of the bay and the northern parts of AN Ridge), into its focal region caused their amplification in the north-central BoB. It was also found that internal tide energy dissipation rates in this focal region were about 10 times larger than those in other open ocean regions.

3.
Nat Commun ; 10(1): 1257, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890708

RESUMEN

Changes in sea level may be attributed either to barotropic (involving the entire water column) or baroclinic processes (governed by stratification). It has been widely accepted that barotropic sea level changes in the tropics are insignificant at intraseasonal time scales (periods of 30-80 days). Based on bottom pressure records, we present evidence for significant basin-wide barotropic sea level variability in the tropical Indian Ocean during December-April with standard deviations amounting to ∼30-60% of the standard deviation in total intraseasonal sea level variability. The origin of this variability is linked to a small patch of wind over the Eastern Indian Ocean, associated with boreal winter Madden-Julian Oscillations (MJO). These large fluctuations are likely to play a prominent role in the intraseasonal sea level and mass budgets. Because of their much faster propagation than baroclinic processes, they allow the basin to adjust to climatic perturbations much more rapidly than was previously thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA