Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417860

RESUMEN

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Diapausa , Resistencia a Antineoplásicos , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Células Clonales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Heterogeneidad Genética/efectos de los fármacos , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Rev Mol Cell Biol ; 24(1): 6-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36028557

RESUMEN

Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.


Asunto(s)
Cromatina , Células Madre Embrionarias , Animales , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Complejo Represivo Polycomb 2/genética , Código de Histonas , Mamíferos/genética , Mamíferos/metabolismo
3.
Cell ; 174(2): 391-405.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937225

RESUMEN

Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Línea Celular , Autorrenovación de las Células , Inmunoprecipitación de Cromatina , Retrovirus Endógenos/genética , Femenino , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oligorribonucleótidos Antisentido/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteína 28 que Contiene Motivos Tripartito/antagonistas & inhibidores , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Regulación hacia Arriba , Nucleolina
4.
Cell ; 158(2): 449-461, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036638

RESUMEN

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. To elucidate endogenous barriers limiting this process, we systematically dissected human cellular reprogramming by combining a genome-wide RNAi screen, innovative computational methods, extensive single-hit validation, and mechanistic investigation of relevant pathways and networks. We identify reprogramming barriers, including genes involved in transcription, chromatin regulation, ubiquitination, dephosphorylation, vesicular transport, and cell adhesion. Specific a disintegrin and metalloproteinase (ADAM) proteins inhibit reprogramming, and the disintegrin domain of ADAM29 is necessary and sufficient for this function. Clathrin-mediated endocytosis can be targeted with small molecules and opposes reprogramming by positively regulating TGF-ß signaling. Genetic interaction studies of endocytosis or ubiquitination reveal that barrier pathways can act in linear, parallel, or feedforward loop architectures to antagonize reprogramming. These results provide a global view of barriers to human cellular reprogramming.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Proteínas ADAM/metabolismo , Adhesión Celular , Células Madre Embrionarias/metabolismo , Endocitosis , Humanos , Ubiquitina/metabolismo
6.
Nature ; 573(7773): 271-275, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485074

RESUMEN

Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.


Asunto(s)
Ácido Ascórbico/metabolismo , Metilación de ADN/fisiología , Células Germinativas/fisiología , Transcriptoma/fisiología , Animales , Deficiencia de Ácido Ascórbico/fisiopatología , Recuento de Células , Proteínas de Unión al ADN/genética , Epigenómica , Femenino , Mutación con Pérdida de Función , Meiosis/fisiología , Ratones , Modelos Animales , Embarazo , Proteínas Proto-Oncogénicas/genética
7.
Cell ; 138(4): 616-8, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703387

RESUMEN

The discovery that adult somatic cells can be induced to become pluripotent by overexpression of a few key transcription factors provides an exciting new window into the basic biology of pluripotency and differentiation.


Asunto(s)
Células Madre Adultas/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Reprogramación Celular , Redes Reguladoras de Genes , Humanos
8.
Nat Rev Mol Cell Biol ; 12(1): 36-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21179060

RESUMEN

Pluripotent stem cells can be derived from embryos or induced from adult cells by reprogramming. They are unique among stem cells in that they can give rise to all cell types of the body. Recent findings indicate that a particularly 'open' chromatin state contributes to maintenance of pluripotency. Two principles are emerging: specific factors maintain a globally open chromatin state that is accessible for transcriptional activation; and other chromatin regulators contribute locally to the silencing of lineage-specific genes until differentiation is triggered. These same principles may apply during reacquisition of an open chromatin state upon reprogramming to pluripotency, and during de-differentiation in cancer.


Asunto(s)
Reprogramación Celular/genética , Cromatina/genética , Células Madre Pluripotentes/fisiología , Animales , Humanos , Modelos Biológicos
9.
Nature ; 540(7631): 119-123, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27880763

RESUMEN

Cultured pluripotent stem cells are a cornerstone of regenerative medicine owing to their ability to give rise to all cell types of the body. Although pluripotent stem cells can be propagated indefinitely in vitro, pluripotency is paradoxically a transient state in vivo, lasting 2-3 days around the time of blastocyst implantation. The exception to this rule is embryonic diapause, a reversible state of suspended development triggered by unfavourable conditions. Diapause is a physiological reproductive strategy widely employed across the animal kingdom, including in mammals, but its regulation remains poorly understood. Here we report that the partial inhibition of mechanistic target of rapamycin (mTOR), a major nutrient sensor and promoter of growth, induces reversible pausing of mouse blastocyst development and allows their prolonged culture ex vivo. Paused blastocysts remain pluripotent and competent-able to give rise to embryonic stem (ES) cells and live, fertile mice. We show that both naturally diapaused blastocysts in vivo and paused blastocysts ex vivo display pronounced reductions in mTOR activity, translation, histone modifications associated with gene activity and transcription. Pausing can be induced directly in cultured ES cells and sustained for weeks without appreciable cell death or deviations from cell cycle distributions. We show that paused ES cells display a remarkable global suppression of transcription, maintain a gene expression signature of diapaused blastocysts and remain pluripotent. These results uncover a new pluripotent stem cell state corresponding to the epiblast of the diapaused blastocyst and indicate that mTOR regulates developmental timing at the peri-implantation stage. Our findings have implications in the fields of assisted reproduction, regenerative medicine, cancer, metabolic disorders and ageing.


Asunto(s)
Blastocisto/citología , Células Madre Pluripotentes/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Células Cultivadas , Regulación hacia Abajo , Desarrollo Embrionario , Femenino , Estratos Germinativos/citología , Histonas/metabolismo , Técnicas In Vitro , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
10.
Bioessays ; 42(4): e1900232, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32053231

RESUMEN

Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis-elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to disease, including cancer, while their increased expression may also trigger immune pathways that result in inflammation or senescence. Interestingly, TEs have recently been found to have novel essential functions during mammalian development. Here, the function and regulation of TEs are discussed, with a focus on LINE1 in mammals. It is proposed that LINE1 is a beneficial endogenous dual regulator of gene expression and genomic diversity during mammalian development, and that both of these functions may be detrimental if deregulated in disease contexts.


Asunto(s)
Cromatina/genética , Elementos Transponibles de ADN/genética , Expresión Génica , Redes Reguladoras de Genes , Variación Genética , Mamíferos/crecimiento & desarrollo , Mamíferos/genética , Animales , Sitios de Unión , Desoxirribonucleasa I/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Humanos
11.
Mol Hum Reprod ; 26(11): 866-878, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010164

RESUMEN

The preimplantation stage of development is exquisitely sensitive to environmental stresses, and changes occurring during this developmental phase may have long-term health effects. Animal studies indicate that IVF offspring display metabolic alterations, including hypertension, glucose intolerance and cardiac hypertrophy, often in a sexual dimorphic fashion. The detailed nature of epigenetic changes following in-vitro culture is, however, unknown. This study was performed to evaluate the epigenetic (using whole-genome bisulfite sequencing (WGBS) and assay for transposase-accessible chromatin using sequencing (ATAC-seq)) and transcriptomic changes (using RNA-seq) occurring in the inner cell mass (ICM) of male or female mouse embryos generated in vivo or by IVF. We found that the ICM of IVF embryos, compared to the in-vivo ICM, differed in 3% of differentially methylated regions (DMRs), of which 0.1% were located on CpG islands. ATAC-seq revealed that 293 regions were more accessible and 101 were less accessible in IVF embryos, while RNA-seq revealed that 21 genes were differentially regulated in IVF embryos. Functional enrichment analysis revealed that stress signalling (STAT and NF-kB signalling), developmental processes and cardiac hypertrophy signalling showed consistent changes in WGBS and ATAC-seq platforms. In contrast, male and female embryos showed minimal changes. Male ICM had an increased number of significantly hyper-methylated DMRs, while only 27 regions showed different chromatin accessibility and only one gene was differentially expressed. In summary, this study provides the first comprehensive analysis of DNA methylation, chromatin accessibility and RNA expression changes induced by IVF in male and female ICMs. This dataset can be of value to all researchers interested in the developmental origin of health and disease (DOHaD) hypothesis and might lead to a better understanding of how early embryonic manipulation may affect adult health.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Epigénesis Genética/fisiología , Caracteres Sexuales , Animales , Células Cultivadas , Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Femenino , Fertilización/fisiología , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Perfilación de la Expresión Génica , Masculino , Ratones , Embarazo , Transcriptoma
13.
Nature ; 500(7461): 222-6, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23812591

RESUMEN

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(II) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.


Asunto(s)
Ácido Ascórbico/farmacología , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Antioxidantes/farmacología , Blastocisto/metabolismo , Línea Celular , Medios de Cultivo/química , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Ratones , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Development ; 142(1): 118-27, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25480920

RESUMEN

The pluripotent mammalian epiblast undergoes unusually fast cell proliferation. This rapid growth is expected to generate a high transcriptional demand, but the underlying mechanisms remain unknown. We show here that the chromatin remodeler Chd1 is required for transcriptional output and development of the mouse epiblast. Chd1(-/-) embryos exhibit proliferation defects and increased apoptosis, are smaller than controls by E5.5 and fail to grow, to become patterned or to gastrulate. Removal of p53 allows progression of Chd1(-/-) mutants only to E7.0-8.0, highlighting the crucial requirement for Chd1 during early post-implantation development. Chd1(-/-) embryonic stem cells (ESCs) have a self-renewal defect and a genome-wide reduction in transcriptional output at both known mRNAs and intergenic transcripts. These transcriptional defects were only uncovered when cell number-normalized approaches were used, and correlate with a lower engagement of RNAP II with transcribed genes in Chd1(-/-) ESCs. We further show that Chd1 directly binds to ribosomal DNA, and that both Chd1(-/-) epiblast cells in vivo and ESCs in vitro express significantly lower levels of ribosomal RNA. In agreement with these findings, mutant cells in vivo and in vitro exhibit smaller and more elongated nucleoli. Thus, the RNA output by both Pol I and II is reduced in Chd1(-/-) cells. Our data indicate that Chd1 promotes a globally elevated transcriptional output required to sustain the distinctly rapid growth of the mouse epiblast.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estratos Germinativos/crecimiento & desarrollo , Estratos Germinativos/metabolismo , Transcripción Genética , Animales , Apoptosis/genética , Tipificación del Cuerpo/genética , Ciclo Celular/genética , Cruzamientos Genéticos , ADN Ribosómico/genética , Proteínas de Unión al ADN/deficiencia , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Precursores del ARN/genética
15.
Proc Natl Acad Sci U S A ; 112(14): E1734-43, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831528

RESUMEN

Lineage specification during development involves reprogramming of transcriptional states, but little is known about how this is regulated in vivo. The chromatin remodeler chomodomain helicase DNA-binding protein 1 (Chd1) promotes an elevated transcriptional output in mouse embryonic stem cells. Here we report that endothelial-specific deletion of Chd1 leads to loss of definitive hematopoietic progenitors, anemia, and lethality by embryonic day (E)15.5. Mutant embryos contain normal numbers of E10.5 intraaortic hematopoietic clusters that express Runx1 and Kit, but these clusters undergo apoptosis and fail to mature into blood lineages in vivo and in vitro. Hematopoietic progenitors emerging from the aorta have an elevated transcriptional output relative to structural endothelium, and this elevation is Chd1-dependent. In contrast, hematopoietic-specific deletion of Chd1 using Vav-Cre has no apparent phenotype. Our results reveal a new paradigm of regulation of a developmental transition by elevation of global transcriptional output that is critical for hemogenesis and may play roles in other contexts.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Transcripción Genética , Animales , Aorta/metabolismo , Apoptosis , Diferenciación Celular , Cromatina/metabolismo , Cruzamientos Genéticos , Proteínas de Unión al ADN/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
16.
Nucleic Acids Res ; 43(3): e16, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25428347

RESUMEN

Genetic screens of an unprecedented scale have recently been made possible by the availability of high-complexity libraries of synthetic oligonucleotides designed to mediate either gene knockdown or gene knockout, coupled with next-generation sequencing. However, several sources of random noise and statistical biases complicate the interpretation of the resulting high-throughput data. We developed HiTSelect, a comprehensive analysis pipeline for rigorously selecting screen hits and identifying functionally relevant genes and pathways by addressing off-target effects, controlling for variance in both gene silencing efficiency and sequencing depth of coverage and integrating relevant metadata. We document the superior performance of HiTSelect using data from both genome-wide RNAi and CRISPR/Cas9 screens. HiTSelect is implemented as an open-source package, with a user-friendly interface for data visualization and pathway exploration. Binary executables are available at http://sourceforge.net/projects/hitselect/, and the source code is available at https://github.com/diazlab/HiTSelect.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN/análisis , Algoritmos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Silenciamiento del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Neoplásicas/metabolismo , ARN/genética , Procesos Estocásticos
17.
Development ; 140(17): 3624-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903189

RESUMEN

Histone variants can replace canonical histones in the nucleosome and modify chromatin structure and gene expression. The histone variant H3.3 preferentially associates with active chromatin and has been implicated in the regulation of a diverse range of developmental processes. However, the mechanisms by which H3.3 may regulate gene activity are unclear and gene duplication has hampered an analysis of H3.3 function in mouse. Here, we report that the specific knockdown of H3.3 in fertilized mouse zygotes leads to developmental arrest at the morula stage. This phenotype can be rescued by exogenous H3.3 but not by canonical H3.1 mRNA. Loss of H3.3 leads to over-condensation and mis-segregation of chromosomes as early as the two-cell stage, with corresponding high levels of aneuploidy, but does not appear to affect zygotic gene activation at the two-cell stage or lineage gene transcription at the morula stage. H3.3-deficient embryos have significantly reduced levels of markers of open chromatin, such as H3K36me2 and H4K16Ac. Importantly, a mutation in H3.3K36 that disrupts H3K36 methylation (H3.3K36R) does not rescue the H3.3 knockdown (KD) phenotype. In addition, H3.3 KD embryos have increased incorporation of linker H1. Knockdown of Mof (Kat8), an acetyltransferase specific for H4K16, similarly leads to excessive H1 incorporation. Remarkably, pan-H1 RNA interference (RNAi) partially rescues the chromosome condensation of H3.3 KD embryos and allows development to the blastocyst stage. These results reveal that H3.3 mediates a balance between open and condensed chromatin that is crucial for the fidelity of chromosome segregation during early mouse development.


Asunto(s)
Cromatina/metabolismo , Segregación Cromosómica/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Histonas/metabolismo , Animales , Segregación Cromosómica/genética , Análisis Citogenético , Desarrollo Embrionario/genética , Técnicas de Silenciamiento del Gen , Histona Acetiltransferasas/genética , Histonas/genética , Ratones , Microscopía Confocal , Microscopía Fluorescente , Morfolinos/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Nature ; 460(7257): 863-8, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19587682

RESUMEN

An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Eucromatina/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Biomarcadores , Proliferación Celular , Células Cultivadas , Reprogramación Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Endodermo/metabolismo , Eucromatina/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Histonas/metabolismo , Metilación , Ratones , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas/genética , Interferencia de ARN
19.
PLoS Genet ; 8(3): e1002576, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438827

RESUMEN

Polycomb repressive complex 2 (PRC2) trimethylates lysine 27 of histone H3 (H3K27me3) to regulate gene expression during diverse biological transitions in development, embryonic stem cell (ESC) differentiation, and cancer. Here, we show that Polycomb-like 3 (Pcl3) is a component of PRC2 that promotes ESC self-renewal. Using mass spectrometry, we identified Pcl3 as a Suz12 binding partner and confirmed Pcl3 interactions with core PRC2 components by co-immunoprecipitation. Knockdown of Pcl3 in ESCs increases spontaneous differentiation, yet does not affect early differentiation decisions as assessed in teratomas and embryoid bodies, indicating that Pcl3 has a specific role in regulating ESC self-renewal. Consistent with Pcl3 promoting PRC2 function, decreasing Pcl3 levels reduces H3K27me3 levels while overexpressing Pcl3 increases H3K27me3 levels. Furthermore, chromatin immunoprecipitation and sequencing (ChIP-seq) reveal that Pcl3 co-localizes with PRC2 core component, Suz12, and depletion of Pcl3 decreases Suz12 binding at over 60% of PRC2 targets. Mutation of conserved residues within the Pcl3 Tudor domain, a domain implicated in recognizing methylated histones, compromises H3K27me3 formation, suggesting that the Tudor domain of Pcl3 is essential for function. We also show that Pcl3 and its paralog, Pcl2, exist in different PRC2 complexes but bind many of the same PRC2 targets, particularly CpG islands regulated by Pcl3. Thus, Pcl3 is a component of PRC2 critical for ESC self-renewal, histone methylation, and recruitment of PRC2 to a subset of its genomic sites.


Asunto(s)
Proliferación Celular , Islas de CpG , Células Madre Embrionarias , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Diferenciación Celular , Islas de CpG/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Ratones , Proteínas Nucleares/genética , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Unión Proteica
20.
J Biol Chem ; 288(25): 18546-60, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23649632

RESUMEN

Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-ß/activin signaling. TGF-ß and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2, but not Smad3, is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells, in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm, mesoderm, and germ cell lineages. Additionally, induction of Cdx2 expression, as a result of decreased Smad2 expression, leads to repression of Oct4 expression, which, together with the decreased Nanog expression, accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.


Asunto(s)
Células Madre Embrionarias/metabolismo , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Proteína Smad2/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Transcripción CDX2 , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Immunoblotting , Ratones , Ratones de la Cepa 129 , Microscopía Fluorescente , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Proteína Smad2/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA