Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Imaging Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760621

RESUMEN

PURPOSE: Prostate specific membrane antigen (PSMA) has been studied in human breast cancer (BCa) biopsies, however, lack of data on PSMA expression in mouse models impedes development of PSMA-targeted therapies, particularly in improving breast conserving surgery (BCS) margins. This study aimed to validate and characterize the expression of PSMA in murine BCa models, demonstrating that PSMA can be utilized to improve therapies and imaging techniques. METHODS: Murine triple negative breast cancer 4T1 cells, and human cell lines, MDA-MB-231, MDA-MB-468, implanted into the mammary fat pads of BALB/c mice, were imaged by our PSMA targeted theranostic agent, PSMA-1-Pc413, and tumor to background ratios (TBR) were calculated to validate selective uptake. Immunohistochemistry was used to correlate PSMA expression in relation to CD31, an endothelial cell biomarker highlighting neovasculature. PSMA expression was also quantified by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS: Accumulation of PSMA-1-Pc413 was observed in 4T1 primary tumors and associated metastases. Average TBR of 4T1 tumors were calculated to be greater than 1.5-ratio at which tumor tissues can be distinguished from normal structures-at peak accumulation with the signal intensity in 4T1 tumors comparable to that in high PSMA expressing PC3-pip tumors. Extraction of 4T1 tumors and lung metastases followed by RT-PCR analysis and PSMA-CD31 co-staining shows that PSMA is consistently localized on tumor neovasculature with no expression in tumor cells and surrounding normal tissues. CONCLUSION: The selective uptake of PSMA-1-Pc413 in these cancer tissues as well as the characterization and validation of PSMA expression on neovasculature in this syngeneic 4T1 model emphasizes their potential for advancements in targeted therapies and imaging techniques for BCa. PSMA holds great promise as an oncogenic target for BCa and its associated metastases.

2.
Theranostics ; 12(5): 2335-2350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265213

RESUMEN

Rationale: Although surgery and radiation therapy in patients with low risk prostate cancer appear appropriate and effective, those with high-risk localized disease almost always become hormone refractory and then rapidly progress. A new treatment strategy is urgently needed for patients with high-risk localized prostate cancer, particularly an approach that combines two drugs with different mechanisms. Combinations of photodynamic therapy (PDT) and chemotherapy have shown synergistic effects in clinical trials, but are limited by off-target toxicity. Prostate specific membrane antigen (PSMA) is a well-established biomarker for prostate cancer. Here we describe the use of a PSMA ligand to selectively and simultaneously deliver a potent microtubule inhibiting agent, monomethyl auristatin E (MMAE), and a PDT agent, IR700, to prostate cancers. Methods: Using a bifunctional PSMA ligand PSMA-1-Cys-C6-Lys, we created a novel theranostic molecule PSMA-1-MMAE-IR700. The molecule was tested in vitro and in vivo for selectivity and antitumor activity studies. Results: PSMA-1-MMAE-IR700 showed selective and specific uptake in PSMA-positive PC3pip cells, but not in PSMA-negative PC3flu cells both in vitro and in vivo. In in vitro cytotoxicity studies, when exposed to 690 nm light, PSMA-1-MMAE-IR700 demonstrated a synergistic effect leading to greater cytotoxicity for PC3pip cells when compared to PSMA-1-IR700 with light irradiation or PSMA-1-MMAE-IR700 without light irradiation. In vivo antitumor activity studies further showed that PSMA-1-MMAE-IR700 with light irradiation significantly inhibited PC3pip tumor growth and prolonged survival time as compared to mice receiving an equimolar amount of PSMA-1-IR700 with light irradiation or PSMA-1-IR700-MMAE without light irradiation. Conclusion: We have synthesized a new multifunctional theranostic molecule that combines imaging, chemotherapy, and PDT for therapy against PSMA-expressing cancer tissues. This work may provide a new treatment option for advanced prostate cancer.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Humanos , Ligandos , Masculino , Ratones , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Nanomedicina Teranóstica , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancers (Basel) ; 13(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499427

RESUMEN

Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand-drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to anti-PSMA antibody-MMAE conjugate (PSMA-ADC) and MMAE, PSMA-1-VcMMAE had over a 10-fold improved maximum tolerated dose, resulting in improved therapeutic index. The small molecule-drug conjugates reported here can be easily synthesized and are more cost efficient than anti-body-drug conjugates. The therapeutic profile of the PSMA-1-VcMMAE encourages further clin-ical development for the treatment of advanced prostate cancer.

4.
Cancer Res ; 80(2): 156-162, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31719100

RESUMEN

Local and metastatic relapses of prostate cancer often occur following attempted curative resection of the primary tumor, and up to 66% of local recurrences are associated with positive margins. Therefore, technologies that can improve the visualization of tumor margins and adjuvant therapies to ablate remaining tumor tissues are needed during surgical resection of prostate adenocarcinoma. Photodynamic agents have the potential to combine both fluorescence for image-guided surgery (IGS) and photodynamic therapy (PDT) to resect and ablate cancer cells. The objective of this study was to determine the utility of a targeted PDT agent for IGS and adjuvant PDT. Using a previously developed prostate-specific membrane antigen (PSMA)-targeted PDT agent, PSMA-1-Pc413, we showed that PSMA-1-Pc413 selectively highlighted PSMA-expressing tumors, allowing IGS and more complete tumor resection compared with white light surgery. Subsequent PDT further reduced tumor recurrence and extended animal survival significantly. This approach also enabled identification of tumor cells in lymph nodes. In summary, this study presents a potential new treatment option for patients with prostate cancer undergoing surgery, which improves tumor visualization and discrimination during surgery, including identification of cancer in lymph nodes. SIGNIFICANCE: These findings present a photodynamic agent that can be used for both photodynamic therapy and image-guided surgery, allowing better visualization of tumor margins and elimination of residual tumor tissues.


Asunto(s)
Antineoplásicos/administración & dosificación , Recurrencia Local de Neoplasia/prevención & control , Fotoquimioterapia/métodos , Prostatectomía/métodos , Neoplasias de la Próstata/terapia , Cirugía Asistida por Computador/métodos , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Quimioterapia Adyuvante/métodos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Inyecciones Intravenosas , Masculino , Márgenes de Escisión , Ratones , Imagen Molecular/métodos , Recurrencia Local de Neoplasia/patología , Próstata/diagnóstico por imagen , Próstata/patología , Próstata/cirugía , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Cancer Ther ; 15(8): 1834-44, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27297866

RESUMEN

Prostatectomy has been the mainstay treatment for men with localized prostate cancer. Surgery, however, often can result in major side effects, which are caused from damage and removal of nerves and muscles surrounding the prostate. A technology that can help surgeons more precisely identify and remove prostate cancer resulting in a more complete prostatectomy is needed. Prostate-specific membrane antigen (PSMA), a type II membrane antigen highly expressed in prostate cancer, has been an attractive target for imaging and therapy. The objective of this study is to develop low molecular weight PSMA-targeted photodynamic therapy (PDT) agents, which would provide image guidance for prostate tumor resection and allow for subsequent PDT to eliminate unresectable or remaining cancer cells. On the basis of our highly negatively charged, urea-based PSMA ligand PSMA-1, we synthesized two PSMA-targeting PDT conjugates named PSMA-1-Pc413 and PSMA-1-IR700. In in vitro cellular uptake experiments and in vivo animal imaging experiments, the two conjugates demonstrated selective and specific uptake in PSMA-positive PC3pip cells/tumors, but not in PSMA-negative PC3flu cells/tumors. Further in vivo photodynamic treatment proved that the two PSMA-1-PDT conjugates can effectively inhibit PC3pip tumor progression. The two PSMA-1-PDT conjugates reported here may have the potential to aid in the detection and resection of prostate cancers. It may also allow for the identification of unresectable cancer tissue and PDT ablation of such tissue after surgical resection with potentially less damage to surrounding tissues. Mol Cancer Ther; 15(8); 1834-44. ©2016 AACR.


Asunto(s)
Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Fotoquimioterapia , Neoplasias de la Próstata/metabolismo , Nanomedicina Teranóstica , Secuencia de Aminoácidos , Animales , Antígenos de Superficie/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutamato Carboxipeptidasa II/química , Humanos , Ligandos , Masculino , Ratones , Imagen Molecular , Estructura Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA