Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Arch Pharm (Weinheim) ; 356(10): e2300270, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452410

RESUMEN

Topoisomerases are ubiquitous enzymes in the human body, particularly involved in cancer development and progression. Topoisomerase I (topoI) performs DNA relaxation reactions by "controlled rotation" rather than by "strand passage." The inhibition of topoI has become a useful strategy to control cancer cell proliferation. Nowadays, different compounds have undergone clinical trials, but the search for new molecular entities is necessary and benefits from medicinal chemistry efforts. Pyrrole-based compounds emerged as promising antiproliferative agents, with particular interest in breast cancer therapy and topoI inhibition. Starting from these observations and based on the scaffold-hopping approach, we developed a small library of 1-(2-aminophenyl)pyrrole-based amides (7a-f) as new anticancer agents. Tested on a panel of cancer cell lines, 7a-f displayed the most interesting profile in MDA-MB-231 cells, where the most active compounds, 7d-f, were able to induce death by apoptosis. Direct enzymatic assays and docking simulations on the topoI active site (PDB: 1A35) revealed the inhibitory activity and potential binding site for the newly developed 1-(2-aminophenyl)pyrrole-based amides.

2.
Arch Pharm (Weinheim) ; 356(12): e2300410, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750286

RESUMEN

Aiming to simultaneously modulate the endocannabinoid system (ECS) functions and the epigenetic machinery, we selected the fatty acid amide hydrolase (FAAH) and histone deacetylase (HDAC) enzymes as desired targets to develop potential neuroprotective multitarget-directed ligands (MTDLs), expecting to achieve an additive or synergistic therapeutic effect in oxidative stress-related conditions. We herein report the design, synthesis, and biological evaluation of the first-in-class FAAH-HDAC multitarget inhibitors. A pharmacophore merging strategy was applied, yielding 1-phenylpyrrole-based compounds 4a-j. The best-performing compounds (4c, 4f, and 4h) were tested for their neuroprotective properties in oxidative stress models, employing 1321N1 human astrocytoma cells and SHSY5 human neuronal cells. In our preliminary studies, compound 4h stood out, showing a balanced nanomolar inhibitory activity against the selected targets and outperforming the standard antioxidant N-acetylcysteine in vitro. Together with 4f, 4h was also able to protect 1321N1 cells from tert-butyl hydroperoxide or glutamate insult. Our study may provide the basis for the development of novel MTDLs targeting the ECS and epigenetic enzymes.


Asunto(s)
Inhibidores de Histona Desacetilasas , Fármacos Neuroprotectores , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Fármacos Neuroprotectores/farmacología , Relación Estructura-Actividad , Amidohidrolasas
3.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241902

RESUMEN

A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Pirroles/farmacología , Pirroles/química , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Melanoma/tratamiento farmacológico , Proliferación Celular , Estructura Molecular , Apoptosis , Línea Celular Tumoral
4.
Invest New Drugs ; 38(3): 634-649, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31240514

RESUMEN

Cutaneous melanoma, the most aggressive form of skin cancer, is characterized by activating BRAF mutations. Despite the initial success of selective BRAF inhibitors, only few patients exhibited complete responses, whereas many showed disease progression. Melanoma is one of the few types of cancer in which p53 is not frequently mutated, but p53 inactivation can be indirectly achieved by a stable activation of MDM2 induced by a deletion in CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) locus, encoding for p16INK4A and p14ARF, two tumor suppressor genes. In this study, we tested the efficacy of the previously synthesized tetra-substituted pyrrole derivatives, 8 g, 8 h and 8i, in melanoma cell lines, and we compared the effects of the most active of these, the 8i compound, with that exerted by Nutlin 3, a well-known inhibitor of p53-MDM2 interaction. The obtained results showed that 8i potentiates the inhibitory effect of Nutlin 3 and the combined use of 8i and Nutlin 3 triggers apoptosis and significantly impairs melanoma viability. Finally, the 8i compound reduces p53-MDM2 interaction and induces p53-HSP90 complex formation, suggesting that the observed raise in p53 transcriptional activity could be mediated by HSP90. Because the main feature of melanoma is the resistance to most chemotherapeutics, our studies suggest that the 8i tetra-substituted pyrrole derivative, restoring p53 functions and its transcriptional activities, may have potential application, at least as adjuvant, in the treatment of human melanoma.


Asunto(s)
Pirroles/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Imidazoles/metabolismo , Melanoma , Mutación/efectos de los fármacos , Piperazinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Melanoma Cutáneo Maligno
5.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069905

RESUMEN

The identification of molecules whose biological activity can be properly modulated by light is a promising therapeutic approach aimed to improve drug selectivity and efficacy on the molecular target and to limit the side effects compared to traditional drugs. Recently, two photo-switchable diastereomeric benzodiazopyrrole derivatives 1RR and 1RS have been reported as microtubules targeting agents (MTAs) on human colorectal carcinoma p53 null cell line (HCT 116 p53-/-). Their IC50 was enhanced upon Light Emitting Diode (LED) irradiation at 435 nm and was related to their cis form. Here we have investigated the photo-responsive behavior of the acid derivatives of 1RR and 1RS, namely, d1RR and d1RS, in phosphate buffer solutions at different pH. The comparison of the UV spectra, acquired before and after LED irradiation, indicated that the trans→cis conversion of d1RR and d1RS is affected by the degree of ionization. The apparent rate constants were calculated from the kinetic data by means of fast UV spectroscopy and the conformers of the putative ionic species present in solution (pH range: 5.7-8.0) were modelled. Taken together, our experimental and theoretical results suggest that the photo-conversions of trans d1RR/d1RS into the corresponding cis forms and the thermal decay of cis d1RR/d1RS are dependent on the presence of diazonium form of d1RR/d1RS. Finally, a photo-reaction was detected only for d1RR after prolonged LED irradiation in acidic medium, and the resulting product was characterized by means of Liquid Chromatography coupled to High resolution Mass Spectrometry (LC-HRMS) and Nuclear Magnetic Resonance (NMR) spectroscopy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/terapia , Fotoquimioterapia , Pirroles/farmacología , Cromatografía Liquida , Neoplasias Colorrectales/patología , Compuestos de Diazonio/química , Compuestos de Diazonio/farmacología , Células HCT116 , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pirroles/química
6.
Molecules ; 22(4)2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398240

RESUMEN

N-Palmitoyl-ethanolamine (PEA) is an anti-inflammatory component of egg yolk that is usually employed for the prevention of respiratory apparatus virus infection and then frequently used for its efficient anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic, and inflammatory diseases. Nevertheless, data of its use in animal or human therapy are still scarce and further studies are needed. Herein, we report the biological evaluation of a small library of N-palmitoyl-ethanolamine analogues or derivatives, characterized by a protected acid function (either as palmitoyl amides or hexadecyl esters), useful to decrease their hydrolysis rate in vitro and prolong their biological activity. Two of these compounds-namely phenyl-carbamic acid hexadecyl ester (4) and 2-methyl-pentadecanoic acid (4-nitro-phenyl)-amide (5)-have shown good anti-inflammatory and antioxidant properties, without affecting the viability of J774A.1 macrophages. Finally, crystals suitable for X-ray analysis of compound 4 have been obtained, and its solved crystal structure is here reported. Our outcomes may be helpful for a rational drug design based on new PEA analogues/derivatives with improved biological properties.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Etanolaminas/química , Etanolaminas/farmacología , Modelos Moleculares , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacología , Amidas , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 23(22): 7302-12, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26526741

RESUMEN

The antitumor activity shown by many platinum complexes has produced a strong interest in research of new organometallic compounds having anticancer action. Among the many metal compounds synthesized and tested, those based on titanium have received considerable attention because of their cytotoxic activity against solid tumors. Particularly, new titanocene compounds containing aromatic groups linked to the Cp (cyclopentadienyl ring, C5H5) have been synthetized, such as the titanocene Y (bis-[(p-methoxybenzyl)cyclopentadienyl]titanium dichloride) that displayed promising medium-high cytotoxic activity on breast cancer cell lines. Other titanocene complexes recently synthesized, obtained by replacing the substituent methoxy-aryl of cyclopentadienes of titanocene Y with ethenyl-methoxide or ethenyl-phenoxide, showed increased cytotoxic activity on breast cancer cell lines being more stable compounds. In this paper, we report that new titanocene complexes holding lipophilic groups, for instance a methyl group on benzyl carbon, exhibit improved antiproliferative effect on breast cancer cell line MCF-7. Similar results have been obtained introducing a 5-methoxy naphthyl group to further stabilize the titanocene complexes. These inhibitory effects on breast cancer cells have been ascribed to human topoisomerase I and II inhibition as demonstrated by specific enzymatic assays.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , Proteínas de Unión al ADN/antagonistas & inhibidores , Compuestos Organometálicos/química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa II/química , Antígenos de Neoplasias/metabolismo , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Células MCF-7 , Microscopía Fluorescente , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/farmacología
8.
Chem Biol Drug Des ; 103(1): e14415, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230797

RESUMEN

Cinnamic acid and its derivatives represent attractive building blocks for the development of pharmacological tools. A series of piperoniloyl and cinnamoyl-based amides (6-9 a-f) have been synthesized and assayed against a wide panel of colorectal cancer (CRC) cells, with the aim of finding promising anticancer agents. Among all twenty-four synthesized molecules, 7a, 7e-f, 9c, and 9f displayed the best antiproliferative activity. The induced G1 cell cycle arrest and the increase in apoptotic cell death was seen in FACS analysis and western Blotting in the colon tumor cell lines HCT116, SW480, LoVo, and HT29, but not in the nontumor cell line HCEC. In particular, 9f overcame the resistance of HT29 cells, which have a mutant p53 and BRAF. Furthermore, 9f, amide of piperonilic acid with the 3,4-dichlorobenzyl substituent upregulated p21, which is involved in cell cycle arrest as well as in apoptosis induction. Cinnamic acid derivatives might be potential anticancer compounds, useful for the development of promising anti-CRC agents.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cinamatos/farmacología , Línea Celular Tumoral , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico
9.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241614

RESUMEN

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Ratones , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monoglicéridos , Ligandos
10.
Eur J Med Chem ; 246: 114952, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462439

RESUMEN

The neuroprotective performance against neuroinflammation of the endocannabinoid system (ECS) can be remarkably improved by indirect stimulation mediated by the pharmacological inhibition of the key ECS catabolic enzyme fatty acid amide hydrolase (FAAH). Based on our previous works and aiming to discover new selective FAAH inhibitors , we herein reported a new series of carbamate-based FAAH inhibitors (4a-t) which showed improved drug disposition properties compared to the previously reported analogues 2a-b. The introduction of ionizable functions allowed us to obtain new FAAH inhibitors of nanomolar potency characterized by good water solubility and chemical stability at physiological pH. Interesting structure-activity relationships (SARs), deeply analyzed by molecular docking and molecular dynamic (MD) simulations, were obtained. All the newly developed inhibitors showed an excellent selectivity profile evaluated against monoacylglycerol lipase and cannabinoid receptors. The reversible mechanism of action was determined by a rapid dilution assay. Absence of toxicity was confirmed in mouse fibroblasts NIH3T3 (for compounds 4e, 4g, 4n-o, and 4s) and in human astrocytes cell line 1321N1 (for compounds 4e, 4n, and 4s). The absence of undesired cardiac effects was also confirmed for compound 4n. Selected analogues (compounds 4e, 4g, 4n, and 4s) were able to reduce oxidative stress in 1321N1 astrocytes and exhibited notable neuroprotective effects when tested in an ex vivo model of neuroinflammation.


Asunto(s)
Inhibidores Enzimáticos , Enfermedades Neuroinflamatorias , Ratones , Animales , Humanos , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Amidohidrolasas/metabolismo , Endocannabinoides/metabolismo
11.
ACS Infect Dis ; 8(8): 1687-1699, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35880849

RESUMEN

Leishmania spp. are responsible for up to 1 million new cases each year. The current therapeutic arsenal against Leishmania is largely inadequate, and there is an urgent need for better drugs. Trypanothione reductase (TR) represents a druggable target since it is essential for the parasite and not shared by the human host. Here, we report the optimization of a novel class of potent and selective LiTR inhibitors realized through a concerted effort involving X-ray crystallography, synthesis, structure-activity relationship (SAR) investigation, molecular modeling, and in vitro phenotypic assays. 5-Nitrothiophene-2-carboxamides 3, 6e, and 8 were among the most potent and selective TR inhibitors identified in this study. 6e and 8 displayed leishmanicidal activity in the low micromolar range coupled to SI > 50. Our studies could pave the way for the use of TR inhibitors not only against leishmaniasis but also against other trypanosomatidae due to the structural similarity of TR enzymes.


Asunto(s)
Leishmania , Leishmaniasis , Descubrimiento de Drogas , Humanos , Leishmaniasis/tratamiento farmacológico , NADH NADPH Oxidorreductasas
12.
Antioxidants (Basel) ; 11(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35204168

RESUMEN

Citrus fruits are one of the principal fruits used to produce juices. Over the years, these fruits have been recognized as new health-promoting agents. In this work, food wastes derived from autochthonous citrus fruits of Southern Italy, named Limone di Rocca Imperiale, Arancia Rossa Moro, and Arancia Bionda Tardivo from Trebisacce, were analyzed. After fresh-squeezing juice, peel and pomace were employed to obtain six different extracts using an ultrasound-assisted method in a hydroalcoholic solvent. The extracts were analyzed in terms of qualitative composition, antioxidant properties, and antiproliferative activity on MCF-7, MDA-MB-231, and BJ-hTERT cell lines. GC-MS and LC-ESI-MS analyses showed different compounds: of note, limonin-hexoside, neodiosmin, obacunone glucoside, and diacetyl nomilinic acid glucoside have been identified as limonoid structures present in all the samples, in addition to different polyphenols including naringenin-glucoside, hesperetin-O-hexoside-O-rhamnoside-O-glucoside, diferuloyl-glucaric acid ester, chlorogenic acid, and the presence of fatty acids such as palmitic, myristic, and linoleic acids. These extracts were able to exert antioxidant activity as demonstrated by DPPH and ABTS assays and, although at higher doses, to reduce the cell viability of different solid tumor cell lines, as shown in MTT assays.

13.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35326088

RESUMEN

Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.

14.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551034

RESUMEN

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Animales , Supervivencia Celular , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Ratones , Ratas , Proteínas Represoras , Tubulina (Proteína)/metabolismo , Pez Cebra/metabolismo
15.
Eur J Med Chem ; 235: 114274, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344902

RESUMEN

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Antineoplásicos/metabolismo , Apoptosis , Autofagia , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Microtúbulos , Neoplasias de la Boca/tratamiento farmacológico
16.
Biochim Biophys Acta ; 1798(3): 660-71, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20045392

RESUMEN

Abeta (16-35) is the hydrophobic central core of beta-amyloid peptide, the main component of plaques found in the brain tissue of Alzheimer's disease patients. Depending on the conditions present, beta-amyloid peptides undergo a conformational transition from random coil or alpha-helical monomers, to highly toxic beta-sheet oligomers and aggregate fibrils. The behavior of beta-amyloid peptide at plasma membrane level has been extensively investigated, and membrane charge has been proved to be a key factor modulating its conformational properties. In the present work we probed the conformational behavior of Abeta (16-35) in response to negative charge modifications of the micelle surface. CD and NMR conformational analyses were performed in negatively charged pure SDS micelles and in zwitterionic DPC micelles "doped" with small amounts of SDS. To analyze the tendency of Abeta (16-35) to interact with these micellar systems, we performed EPR experiments on three spin-labeled analogues of Abeta (16-35), bearing the methyl 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl) methanethiolsulfonate spin label at the N-terminus, in the middle of the sequence and at the C-terminus, respectively. Our conformational data show that, by varying the negative charge of the membrane, Abeta (16-35) undergoes a conformational transition from a soluble helical-kink-helical structure, to a U-turn shaped conformation that resembles protofibril models.


Asunto(s)
Péptidos beta-Amiloides/química , Membrana Celular/química , Micelas , Fragmentos de Péptidos/química , Electricidad Estática , Secuencia de Aminoácidos , Dicroismo Circular , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Marcadores de Spin
17.
J Pept Sci ; 16(2): 115-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20063331

RESUMEN

Aggregation of beta-amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble beta-amyloid aggregation using synthetic beta-sheet breaker peptides that are capable of binding Abeta but are unable to become part of a beta-sheet structure. As the early stages of the Abeta aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the beta-sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the beta-sheet breaker peptide acetyl-LPFFD-amide, iAbeta5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C- and at the N-terminus or phospholipids spin-labeled in different positions of the acyl chain. Our results show that iAbeta5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAbeta5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Lípidos de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Lípidos de la Membrana/química , Datos de Secuencia Molecular , Estructura Molecular , Oxidación-Reducción , Fragmentos de Péptidos/química
18.
Biochim Biophys Acta ; 1778(12): 2710-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18706389

RESUMEN

There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of beta-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Abeta(1-42), i.e., Abeta(25-35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Abeta(25-35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Abeta(25-35).


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Fosfolípidos/metabolismo , Enfermedad de Alzheimer , Péptidos beta-Amiloides/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Membrana Dobles de Lípidos/química , Fragmentos de Péptidos/química , Péptidos/química , Fosfolípidos/química
19.
Bioorg Med Chem ; 16(15): 7510-5, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18579386

RESUMEN

In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.


Asunto(s)
Acetamidas/química , Acetamidas/farmacología , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/metabolismo , Animales , Línea Celular Tumoral , Ligandos , Ratones , Estructura Molecular , Relación Estructura-Actividad
20.
Molecules ; 13(4): 749-61, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18463576

RESUMEN

We report the synthesis, antioxidant and antiproliferative activity and a QSAR analysis of synthetic diphenylpropionamide derivatives. Synthesis of these compounds was achieved by direct condensation of 2,2- and 3,3-diphenylpropionic acid and appropriate amines using 1-propylphoshonic acid cyclic anhydride (PPAA) as catalyst. Compound structures were elucidated by NMR analysis and their melting points were measured. The in vitro antioxidant activity of these compounds was tested by evaluating the amount of scavenged ABTS radical and estimating ROS and NO production in LPS stimulated J774.A1 macrophages. All compounds were tested for their effect on viability of cells and results demonstrated that they are not toxic towards the cell lines used. The cytotoxic activity of all compounds was evaluated by a Brine Shrimp Test.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Biología Computacional/métodos , Propionatos/farmacología , Amidas/química , Animales , Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Propionatos/síntesis química , Propionatos/química , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA