RESUMEN
BACKGROUND: Post-tuberculosis lung abnormality (PTLA) is the most common risk factor for developing chronic pulmonary aspergillosis (CPA). However, the prevalence and incidence of CPA in PTLA patients in India remain unknown. OBJECTIVES: We aimed to ascertain the incidence and prevalence of CPA in subjects with PTLA. METHODS: We identified a cohort of pulmonary tuberculosis who completed anti-tuberculosis therapy (ATT) before November 2019 from the records of the 12 tuberculosis treatment centers attached to the national program. We recorded the clinical and demographic details. We performed computed tomography (CT) of the chest and estimated serum A. fumigatus-specific IgG. We categorised subjects as PTLA with or without CPA using a composite of clinical, radiological, and microbiological features. We resurveyed the subjects at 6 months (or earlier) for the presence of new symptoms. We calculated the prevalence and the incidence rate (per 100-person years) of CPA. RESULTS: We included 117 subjects with PTLA, with a median of 3 years after ATT completion. Eleven subjects had CPA in the initial survey, and one additional case developed CPA during the second survey. The prevalence of CPA in PTLA subjects was 10.3% (12/117). The total observation period was 286.7 person-years. The median (interquartile range) time to develop CPA after ATT completion was 12.5 (5-36.7) months. We found the CPA incidence rate (95% confidence interval) of 4.2 (1.8-6.5) per 100-person years. CONCLUSION: Chronic pulmonary aspergillosis complicates 10% of PTLA subjects after successful outcomes with ATT. Four new CPA cases may develop per 100-persons years of observation after ATT completion. We suggest screening patients with PTLA who develop new symptoms for CPA.
Asunto(s)
Enfermedades Pulmonares , Aspergilosis Pulmonar , Tuberculosis Pulmonar , Humanos , Incidencia , Prevalencia , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/epidemiología , Aspergilosis Pulmonar/diagnóstico , Enfermedades Pulmonares/complicaciones , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/epidemiología , Pulmón/diagnóstico por imagen , Pulmón/microbiología , Encuestas y Cuestionarios , Enfermedad CrónicaRESUMEN
Biosurfactants are surface-active molecules that are synthesized by many microorganisms like fungi, bacteria, and yeast. These molecules are amphiphilic in nature, possessing emulsifying ability, detergency, foaming, and surface-activity like characteristics. Yeast species belongs to the genus Candida has gained globally enormous interest because of the diverse properties of biosurfactants produced by theme. In contrast to synthetic surfactants, biosurfactants are claimed to be biodegradable and non-toxic which labels them as a potent industrial compound. Biosurfactants produced by this genus are reported to possess certain biological activities, such as anticancer and antiviral activities. They also have potential industrial applications in bioremediation, oil recovery, agricultural, pharmaceutical, biomedical, food, and cosmetic industries. Various species of Candida have been recognized as biosurfactant producers, including Candida petrophilum, Candida bogoriensis, Candida antarctica, Candida lipolytica, Candida albicans, Candida batistae, Candida albicans, Candida sphaerica, etc. These species produce various forms of biosurfactants, such as glycolipids, lipopeptides, fatty acids, and polymeric biosurfactants, which are distinct according to their molecular weights. Herein, we provide a detailed overview of various types of biosurfactants produced by Candida sp., process optimization for better production, and the latest updates on the applications of these biosurfactants.
Asunto(s)
Candida , Tensoactivos , Tensoactivos/farmacología , Tensoactivos/química , Bacterias , Levaduras , Candida albicansRESUMEN
The population and modernization of society have increased dramatically from past few decades. In order to meet societal expectations, there has been a massive industrialization and resource exploitation. Anthropogenic practices like disposal of hazardous waste, large carbon footprint release variety of xenobiotic substances into the environment, which endanger the health of the natural ecosystem. Therefore, discovering proper long-term treatment approaches is a global concern. Various physical and chemical approaches are employed to remove contaminants. However, these technologies possess limitations like high cost and low efficacy. Consequently, bioremediation is regarded as one of the most promising remedies to these problems. It creates the option of either totally removing pollutants or transforming them into nonhazardous compounds with the use of natural biological agents. Several microorganisms are being utilized for bioremediation among which yeasts possess benefits such as high biodegradability, ease of cultivation etc. The yeast of Candida genus has the capability to effectively eliminate heavy metal ions, as well as to degrade and emulsify hydrocarbons which makes it a promising candidate for this purpose. The review highlights many potential uses of Candida in various remediation strategies and discusses future directions for research in this field.
Asunto(s)
Contaminantes Ambientales , Iones Pesados , Candida , Biodegradación Ambiental , Ecosistema , Saccharomyces cerevisiaeRESUMEN
The aim of this study was to evaluate the toxicological profile of biosurfactant encapsulated polymeric nanoparticles of Polylactic acid-Polyethylene glycol (PLA-PEG) in mice. Hematological, biochemical and histopathological samples of rodents were evaluated. Mice were selected randomly and divided into 3 treatment groups and one control group. Group I mice served as a control group, Group II were administrated with biosurfactant, Group III were treated with Polymeric nanoparticles of PLA-PEG. Group IV mice were injected with biosurfactant loaded polymeric nanoparticles of PLA-PEG. The formulations were administered intravenously via tail vein with 20 µg/mL dose concentration of biosurfactant. The normal control group was injected with only PBS. Blood samples were collected on 7th, 14th and 21st day and hematological and biochemical assays were performed. After the blood collection, mice were sacrificed for histopathological examination. The results showed that there were no significant difference in hematology parameter between the control and treated group. Some minute, non-significant changes were found in biochemical parameters which were not considered. Histopathological result of selected vital organs revealed that the biosurfactant and/or PLA-PEG polymeric nanoparticles can be considered as safe as no toxicological features were observed in histopathology of tissues. Hence, it can be deliberated that the biosurfactant encapsulated in PLA-PEG copolymeric nanoparticles are non toxic and can provide a safe, suitable platform for biomedical applications in future.