Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 561-565, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33503447

RESUMEN

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Asunto(s)
Investigación Biomédica/economía , Negro o Afroamericano , Administración Financiera , Investigadores/economía , Humanos , National Institutes of Health (U.S.)/economía , Grupos Raciales , Estados Unidos
2.
Cell ; 182(6): 1531-1544.e15, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32846158

RESUMEN

The fidelity of intracellular signaling hinges on the organization of dynamic activity architectures. Spatial compartmentation was first proposed over 30 years ago to explain how diverse G protein-coupled receptors achieve specificity despite converging on a ubiquitous messenger, cyclic adenosine monophosphate (cAMP). However, the mechanisms responsible for spatially constraining this diffusible messenger remain elusive. Here, we reveal that the type I regulatory subunit of cAMP-dependent protein kinase (PKA), RIα, undergoes liquid-liquid phase separation (LLPS) as a function of cAMP signaling to form biomolecular condensates enriched in cAMP and PKA activity, critical for effective cAMP compartmentation. We further show that a PKA fusion oncoprotein associated with an atypical liver cancer potently blocks RIα LLPS and induces aberrant cAMP signaling. Loss of RIα LLPS in normal cells increases cell proliferation and induces cell transformation. Our work reveals LLPS as a principal organizer of signaling compartments and highlights the pathological consequences of dysregulating this activity architecture.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/genética , Compartimento Celular/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Neoplasias Hepáticas/genética , Transducción de Señal , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Compartimento Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , AMP Cíclico/farmacología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Oncogenes/genética , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión , Espectroscopía Infrarroja por Transformada de Fourier , Imagen de Lapso de Tiempo/métodos
3.
Cell ; 154(6): 1356-69, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034255

RESUMEN

Shape is an indicator of cell health. But how is the information in shape decoded? We hypothesize that decoding occurs by modulation of signaling through changes in plasma membrane curvature. Using analytical approaches and numerical simulations, we studied how elongation of cell shape affects plasma membrane signaling. Mathematical analyses reveal transient accumulation of activated receptors at regions of higher curvature with increasing cell eccentricity. This distribution of activated receptors is periodic, following the Mathieu function, and it arises from local imbalance between reaction and diffusion of soluble ligands and receptors in the plane of the membrane. Numerical simulations show that transient microdomains of activated receptors amplify signals to downstream protein kinases. For growth factor receptor pathways, increasing cell eccentricity elevates the levels of activated cytoplasmic Src and nuclear MAPK1,2. These predictions were experimentally validated by changing cellular eccentricity, showing that shape is a locus of retrievable information storage in cells.


Asunto(s)
Membrana Celular/metabolismo , Forma de la Célula , Modelos Biológicos , Transducción de Señal , Animales , Células COS , Membrana Celular/química , Chlorocebus aethiops , Humanos , Ratas
4.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933600

RESUMEN

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Asunto(s)
Cardiolipinas , Lipidómica , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(3): e2309152121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38207079

RESUMEN

Cellular remodeling of actin networks underlies cell motility during key morphological events, from embryogenesis to metastasis. In these transformations, there is an inherent competition between actin branching and bundling, because steric clashes among branches create a mechanical barrier to bundling. Recently, liquid-like condensates consisting purely of proteins involved in either branching or bundling of the cytoskeleton have been found to catalyze their respective functions. Yet in the cell, proteins that drive branching and bundling are present simultaneously. In this complex environment, which factors determine whether a condensate drives filaments to branch or become bundled? To answer this question, we added the branched actin nucleator, Arp2/3, to condensates composed of VASP, an actin bundling protein. At low actin to VASP ratios, branching activity, mediated by Arp2/3, robustly inhibited VASP-mediated bundling of filaments, in agreement with agent-based simulations. In contrast, as the actin to VASP ratio increased, addition of Arp2/3 led to formation of aster-shaped structures, in which bundled filaments emerged from a branched actin core, analogous to filopodia emerging from a branched lamellipodial network. These results demonstrate that multi-component, liquid-like condensates can modulate the inherent competition between bundled and branched actin morphologies, leading to organized, higher-order structures, similar to those found in motile cells.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Actinas/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Citoesqueleto/metabolismo , Movimiento Celular/fisiología , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/química
6.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36856068

RESUMEN

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Asunto(s)
Células Eucariotas , Proteómica , Transducción de Señal , GTP Fosfohidrolasas
7.
Exp Physiol ; 109(6): 939-955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643471

RESUMEN

Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.


Asunto(s)
Músculo Esquelético , Resistencia Física , Entrenamiento de Fuerza , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Resistencia Física/fisiología , Animales , Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Modelos Biológicos
8.
PLoS Comput Biol ; 19(12): e1011694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048346

RESUMEN

A critical step in how malaria parasites invade red blood cells (RBCs) is the wrapping of the membrane around the egg-shaped merozoites. Recent experiments have revealed that RBCs can be protected from malaria invasion by high membrane tension. While cellular and biochemical aspects of parasite actomyosin motor forces during the malaria invasion have been well studied, the important role of the biophysical forces induced by the RBC membrane-cytoskeleton composite has not yet been fully understood. In this study, we use a theoretical model for lipid bilayer mechanics, cytoskeleton deformation, and membrane-merozoite interactions to systematically investigate the influence of effective RBC membrane tension, which includes contributions from the lipid bilayer tension, spontaneous tension, interfacial tension, and the resistance of cytoskeleton against shear deformation on the progression of membrane wrapping during the process of malaria invasion. Our model reveals that this effective membrane tension creates a wrapping energy barrier for a complete merozoite entry. We calculate the tension threshold required to impede the malaria invasion. We find that the tension threshold is a nonmonotonic function of spontaneous tension and undergoes a sharp transition from large to small values as the magnitude of interfacial tension increases. We also predict that the physical properties of the RBC cytoskeleton layer-particularly the resting length of the cytoskeleton-play key roles in specifying the degree of the membrane wrapping. We also found that the shear energy of cytoskeleton deformation diverges at the full wrapping state, suggesting the local disassembly of the cytoskeleton is required to complete the merozoite entry. Additionally, using our theoretical framework, we predict the landscape of myosin-mediated forces and the physical properties of the RBC membrane in regulating successful malaria invasion. Our findings on the crucial role of RBC membrane tension in inhibiting malaria invasion can have implications for developing novel antimalarial therapeutic or vaccine-based strategies.


Asunto(s)
Membrana Dobles de Lípidos , Malaria , Humanos , Plasmodium falciparum/metabolismo , Eritrocitos/metabolismo , Membrana Celular/metabolismo , Malaria/prevención & control , Malaria/parasitología
9.
PLoS Comput Biol ; 19(4): e1011041, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37018170

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1010651.].

10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990464

RESUMEN

YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.


Asunto(s)
Algoritmos , Modelos Biológicos , Transducción de Señal , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Forma de la Célula , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Humanos , Fenómenos Mecánicos , Poro Nuclear/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33688043

RESUMEN

Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multivalent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membrane curvature. We find that protein phase separation on the surfaces of synthetic and cell-derived membrane vesicles creates a substantial compressive stress in the plane of the membrane. This stress drives the membrane to bend inward, creating protein-lined membrane tubules. A simple mechanical model of this process accurately predicts the experimentally measured relationship between the rigidity of the membrane and the diameter of the membrane tubules. Discovery of this mechanism, which may be relevant to a broad range of cellular protrusions, illustrates that membrane remodeling is not exclusive to structured scaffolds but can also be driven by the rapidly emerging class of liquid-like protein networks that assemble at membranes.


Asunto(s)
Membrana Celular/química , Fuerza Compresiva , Proteínas de la Membrana/química , Estrés Mecánico , Humanos , Conformación Proteica
12.
J Physiol ; 601(15): 3377-3402, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36620889

RESUMEN

Synaptic plasticity involves modification of both biochemical and structural components of neurons. Many studies have revealed that the change in the number density of the glutamatergic receptor AMPAR at the synapse is proportional to synaptic weight update; an increase in AMPAR corresponds to strengthening of synapses while a decrease in AMPAR density weakens synaptic connections. The dynamics of AMPAR are thought to be regulated by upstream signalling, primarily the calcium-CaMKII pathway, trafficking to and from the synapse, and influx from extrasynaptic sources. Previous work in the field of deterministic modelling of CaMKII dynamics has assumed bistable kinetics, while experiments and rule-based modelling have revealed that CaMKII dynamics can be either monostable or ultrasensitive. This raises the following question: how does the choice of model assumptions involving CaMKII dynamics influence AMPAR dynamics at the synapse? To answer this question, we have developed a set of models using compartmental ordinary differential equations to systematically investigate contributions of different signalling and trafficking variations, along with their coupled effects, on AMPAR dynamics at the synaptic site. We find that the properties of the model including network architecture describing different stability features of CaMKII and parameters that capture the endocytosis and exocytosis of AMPAR significantly affect the integration of fast upstream species by slower downstream species. Furthermore, we predict that the model outcome, as determined by bound AMPAR at the synaptic site, depends on (1) the choice of signalling model (bistable CaMKII or monostable CaMKII dynamics), (2) trafficking versus influx contributions and (3) frequency of stimulus. KEY POINTS: The density of AMPA receptors (AMPARs) at the postsynaptic density of the synapse provides a readout of synaptic plasticity, which involves crosstalk between complex biochemical signalling networks including CaMKII dynamics and trafficking pathways including exocytosis and endocytosis. Here we build a model that integrates CaMKII dynamics and AMPAR trafficking to explore this crosstalk. We compare different models of CaMKII that result in monostable or bistable kinetics and their impact on AMPAR dynamics. Our results show that AMPAR density depends on the coupling between aspects of biochemical signalling and trafficking. Specifically, assumptions regarding CaMKII dynamics and its stability features can alter AMPAR density at the synapse. Our model also predicts that the kinetics of trafficking versus influx of AMPAR from the extrasynaptic space can further impact AMPAR density. Thus, the contributions of both signalling and trafficking should be considered in computational models.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Transmisión Sináptica , Transmisión Sináptica/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
13.
J Physiol ; 601(15): 3329-3350, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36326020

RESUMEN

The modification of neural circuits depends on the strengthening and weakening of synaptic connections. Synaptic strength is often correlated to the density of the ionotropic, glutamatergic receptors, AMPARs, (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) at the postsynaptic density (PSD). While AMPAR density is known to change based on complex biological signalling cascades, the effect of geometric factors such as dendritic spine shape, size and curvature remain poorly understood. In this work, we developed a deterministic, spatiotemporal model to study the dynamics of AMPARs during long-term potentiation (LTP). This model includes a minimal set of biochemical events that represent the upstream signalling events, trafficking of AMPARs to and from the PSD, lateral diffusion in the plane of the spine membrane, and the presence of an extrasynaptic AMPAR pool. Using idealized and realistic spine geometries, we show that the dynamics and increase of bound AMPARs at the PSD depends on a combination of endo- and exocytosis, membrane diffusion, the availability of free AMPARs and intracellular signalling interactions. We also found non-monotonic relationships between spine volume and the change in AMPARs at the PSD, suggesting that spines restrict changes in AMPARs to optimize resources and prevent runaway potentiation. KEY POINTS: Synaptic plasticity involves dynamic biochemical and physical remodelling of small protrusions called dendritic spines along the dendrites of neurons. Proper synaptic functionality within these spines requires changes in receptor number at the synapse, which has implications for downstream neural functions, such as learning and memory formation. In addition to being signalling subcompartments, spines also have unique morphological features that can play a role in regulating receptor dynamics on the synaptic surface. We have developed a spatiotemporal model that couples biochemical signalling and receptor trafficking modalities in idealized and realistic spine geometries to investigate the role of biochemical and biophysical factors in synaptic plasticity. Using this model, we highlight the importance of spine size and shape in regulating bound AMPA receptor dynamics that govern synaptic plasticity, and predict how spine shape might act to reset synaptic plasticity as a built-in resource optimization and regulation tool.


Asunto(s)
Espinas Dendríticas , Neuronas , Espinas Dendríticas/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Hipocampo/fisiología
14.
PLoS Comput Biol ; 18(10): e1010651, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36269772

RESUMEN

Dynamical systems modeling, particularly via systems of ordinary differential equations, has been used to effectively capture the temporal behavior of different biochemical components in signal transduction networks. Despite the recent advances in experimental measurements, including sensor development and '-omics' studies that have helped populate protein-protein interaction networks in great detail, modeling in systems biology lacks systematic methods to estimate kinetic parameters and quantify associated uncertainties. This is because of multiple reasons, including sparse and noisy experimental measurements, lack of detailed molecular mechanisms underlying the reactions, and missing biochemical interactions. Additionally, the inherent nonlinearities with respect to the states and parameters associated with the system of differential equations further compound the challenges of parameter estimation. In this study, we propose a comprehensive framework for Bayesian parameter estimation and complete quantification of the effects of uncertainties in the data and models. We apply these methods to a series of signaling models of increasing mathematical complexity. Systematic analysis of these dynamical systems showed that parameter estimation depends on data sparsity, noise level, and model structure, including the existence of multiple steady states. These results highlight how focused uncertainty quantification can enrich systems biology modeling and enable additional quantitative analyses for parameter estimation.


Asunto(s)
Modelos Biológicos , Biología de Sistemas , Biología de Sistemas/métodos , Teorema de Bayes , Cinética , Transducción de Señal/fisiología
15.
PLoS Comput Biol ; 18(6): e1010126, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666763

RESUMEN

Super-resolution imaging techniques have provided a better understanding of the relationship between the nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Recent data have indicated that this relationship is disrupted in heart failure (HF), as RyRs are dispersed into smaller and more numerous clusters. However, RyRs are also hyperphosphorylated in this condition, and this is reported to occur preferentially within the cluster centre. Thus, the combined impact of RyR relocalization and sensitization on Ca2+ spark generation in failing cardiomyocytes is likely complex and these observations suggest that both the nanoscale organization of RyRs and the pattern of phosphorylated RyRs within clusters could be critical determinants of Ca2+ spark dynamics. To test this hypothesis, we used computational modeling to quantify the relationships between RyR cluster geometry, phosphorylation patterns, and sarcoplasmic reticulum (SR) Ca2+ release. We found that RyR cluster disruption results in a decrease in spark fidelity and longer sparks with a lower amplitude. Phosphorylation of some RyRs within the cluster can play a compensatory role, recovering healthy spark dynamics. Interestingly, our model predicts that such compensation is critically dependent on the phosphorylation pattern, as phosphorylation localized within the cluster center resulted in longer Ca2+ sparks and higher spark fidelity compared to a uniformly distributed phosphorylation pattern. Our results strongly suggest that both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in HF.


Asunto(s)
Insuficiencia Cardíaca , Canal Liberador de Calcio Receptor de Rianodina , Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos , Miocitos Cardíacos/fisiología , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
16.
Soft Matter ; 19(23): 4345-4359, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37255421

RESUMEN

Plasma membrane tubes are ubiquitous in cellular membranes and in the membranes of intracellular organelles. They play crucial roles in trafficking, ion transport, and cellular motility. These tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins. Here, we present a mathematical framework to model cylindrical tubular protrusions formed by proteins that induce anisotropic spontaneous curvature. Our analysis revealed that the tube radius depends on an effective tension that includes contributions from the bare membrane tension and the protein-induced curvature. We also found that the length of the tube undergoes an abrupt transition from a short, dome-shaped membrane to a long cylinder and this transition is characteristic of a snapthrough instability. Finally, we show that the snapthrough instability depends on the different parameters including coat area, bending modulus, and extent of protein-induced curvature. Our findings have implications for tube formation due to BAR-domain proteins in processes such as endocytosis, t-tubule formation in myocytes, and cristae formation in mitochondria.


Asunto(s)
Proteínas de la Membrana , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo
17.
Cell ; 133(4): 666-80, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485874

RESUMEN

The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.


Asunto(s)
Forma de la Célula , Sistema de Señalización de MAP Quinasas , Neuronas/metabolismo , Animales , Aplysia , AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Feto , Hipocampo/citología , Isoproterenol/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Neuronas/citología , Neuronas/enzimología , Ratas , Receptores Adrenérgicos beta 2/metabolismo
18.
Phys Biol ; 19(4)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35508164

RESUMEN

Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer's disease.


Asunto(s)
Espinas Dendríticas , Enfermedades Neurodegenerativas , Espinas Dendríticas/fisiología , Humanos , Plasticidad Neuronal , Neuronas/fisiología
19.
J Mol Cell Cardiol ; 154: 32-40, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548239

RESUMEN

The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how ß-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Transducción de Señal , Animales , Biomarcadores , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Receptores Adrenérgicos beta/metabolismo , Sistemas de Mensajero Secundario
20.
J Membr Biol ; 254(3): 273-291, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33462667

RESUMEN

Membrane tubulation is a ubiquitous process that occurs both at the plasma membrane and on the membranes of intracellular organelles. These tubulation events are known to be mediated by forces applied on the membrane either due to motor proteins, by polymerization of the cytoskeleton, or due to the interactions between membrane proteins binding onto the membrane. The numerous experimental observations of tube formation have been amply supported by mathematical modeling of the associated membrane mechanics and have provided insights into the force-displacement relationships of membrane tubes. Recent advances in quantitative biophysical measurements of membrane-protein interactions and tubule formation have necessitated the need for advances in modeling that will account for the interplay of multiple aspects of physics that occur simultaneously. Here, we present a comprehensive review of experimental observations of tubule formation and provide context from the framework of continuum modeling. Finally, we explore the scope for future research in this area with an emphasis on iterative modeling and experimental measurements that will enable us to expand our mechanistic understanding of tubulation processes in cells.


Asunto(s)
Citoesqueleto , Microtúbulos , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA