RESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Linfocitos B , Tejido Linfoide , Centro Germinal , Factores de TranscripciónRESUMEN
To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.
Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Perfilación de la Expresión Génica , Membrana Sinovial/metabolismo , Transcriptoma , Artritis Reumatoide/patología , Autoinmunidad/genética , Biomarcadores , Biología Computacional/métodos , Estudios Transversales , Citocinas/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Análisis de la Célula Individual/métodos , Membrana Sinovial/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Flujo de TrabajoRESUMEN
Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.
Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Citocinas/metabolismo , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Membrana Sinovial/patología , Linfocitos T/inmunología , Linfocitos B/inmunología , Predisposición Genética a la Enfermedad/genética , Fenotipo , Análisis de Expresión Génica de una Sola CélulaRESUMEN
Tuberculosis is the leading cause of death by an infectious disease worldwide1. However, the involvement of innate lymphoid cells (ILCs) in immune responses to infection with Mycobacterium tuberculosis (Mtb) is unknown. Here we show that circulating subsets of ILCs are depleted from the blood of participants with pulmonary tuberculosis and restored upon treatment. Tuberculosis increased accumulation of ILC subsets in the human lung, coinciding with a robust transcriptional response to infection, including a role in orchestrating the recruitment of immune subsets. Using mouse models, we show that group 3 ILCs (ILC3s) accumulated rapidly in Mtb-infected lungs and coincided with the accumulation of alveolar macrophages. Notably, mice that lacked ILC3s exhibited a reduction in the accumulation of early alveolar macrophages and decreased Mtb control. We show that the C-X-C motif chemokine receptor 5 (CXCR5)-C-X-C motif chemokine ligand 13 (CXCL13) axis is involved in Mtb control, as infection upregulates CXCR5 on circulating ILC3s and increases plasma levels of its ligand, CXCL13, in humans. Moreover, interleukin-23-dependent expansion of ILC3s in mice and production of interleukin-17 and interleukin-22 were found to be critical inducers of lung CXCL13, early innate immunity and the formation of protective lymphoid follicles within granulomas. Thus, we demonstrate an early protective role for ILC3s in immunity to Mtb infection.
Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/clasificación , Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Animales , Quimiocina CXCL13/inmunología , Femenino , Granuloma/inmunología , Granuloma/patología , Humanos , Interleucina-17/inmunología , Interleucinas/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Linfocitos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Receptores CXCR5/inmunología , Transcriptoma/genética , Tuberculosis Pulmonar/genética , Interleucina-22RESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCÆ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCÆ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCÆ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.
Asunto(s)
Mycobacterium tuberculosis , Fosfoinositido Fosfolipasa C , Tuberculosis , Humanos , Ratones , Animales , Activación de Macrófagos , Inmunidad InnataRESUMEN
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4(+)CD3(-) lymphoid tissue-inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4(+) T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-α-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.
Asunto(s)
Bronquios/inmunología , Tejido Linfoide/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Quimiocina CXCL13/biosíntesis , Quimiocina CXCL13/inmunología , Interleucina-17/inmunología , Linfotoxina-alfa/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neumonía/inmunología , Linfocitos T Colaboradores-Inductores/inmunologíaRESUMEN
BACKGROUND: In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS: We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS: We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS: These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.
Asunto(s)
Cicatriz/fisiopatología , Riñón/fisiopatología , Macrófagos/citología , Neutrófilos/citología , Pielonefritis/metabolismo , Animales , Escherichia coli , Femenino , Fibrosis/microbiología , Fibrosis/fisiopatología , Inflamación , Riñón/microbiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Fagocitosis , Pielonefritis/microbiología , Pielonefritis/fisiopatología , Infecciones Urinarias/microbiología , Infecciones Urinarias/fisiopatologíaRESUMEN
Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical "hypervirulent" Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.
Asunto(s)
Linfocitos B/fisiología , Granuloma/microbiología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/microbiología , Animales , Granuloma/patología , Cadenas mu de Inmunoglobulina/genética , Cadenas mu de Inmunoglobulina/metabolismo , Pulmón/microbiología , Pulmón/patología , Linfocitos/fisiología , Macaca mulatta , Macrófagos/fisiología , Ratones Noqueados , Tuberculosis Pulmonar/patología , VirulenciaRESUMEN
Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.
Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Evasión Inmune , Inmunidad Mucosa , Enfermedades Pulmonares Fúngicas/inmunología , Proteínas de Transporte de Monosacáridos/inmunología , Xilosa/metabolismo , Animales , Transporte Biológico , Criptococosis/genética , Criptococosis/microbiología , Criptococosis/mortalidad , Cryptococcus neoformans/patogenicidad , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Pulmón/inmunología , Pulmón/microbiología , Enfermedades Pulmonares Fúngicas/genética , Enfermedades Pulmonares Fúngicas/microbiología , Enfermedades Pulmonares Fúngicas/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Transducción de Señal , Análisis de Supervivencia , Células Th2/inmunología , Células Th2/microbiología , Xilosa/inmunologíaRESUMEN
Studying influenza A virus (IAV) requires the use of secondary approaches to detect the presence of virus in infected cells. To overcome this problem, we and others have generated recombinant IAV expressing fluorescent or luciferase reporter genes. These foreign reporter genes can be used as valid surrogates to track the presence of virus. However, the limited capacity for incorporating foreign sequences in the viral genome forced researchers to select a fluorescent or a luciferase reporter gene, depending on the type of study. To circumvent this limitation, we engineered a novel recombinant replication-competent bireporter IAV (BIRFLU) expressing both fluorescent and luciferase reporter genes. In cultured cells, BIRFLU displayed growth kinetics comparable to those of wild-type (WT) virus and was used to screen neutralizing antibodies or compounds with antiviral activity. The expression of two reporter genes allows monitoring of viral inhibition by fluorescence or bioluminescence, overcoming the limitations associated with the use of one reporter gene as a readout. In vivo, BIRFLU effectively infected mice, and both reporter genes were detected using in vivo imaging systems (IVIS). The ability to generate recombinant IAV harboring multiple foreign genes opens unique possibilities for studying virus-host interactions and for using IAV in high-throughput screenings (HTS) to identify novel antivirals that can be incorporated into the therapeutic armamentarium to control IAV infections. Moreover, the ability to genetically manipulate the viral genome to express two foreign genes offers the possibility of developing novel influenza vaccines and the feasibility for using recombinant IAV as vaccine vectors to treat other pathogen infections.IMPORTANCE Influenza A virus (IAV) causes a human respiratory disease that is associated with significant health and economic consequences. In recent years, the use of replication-competent IAV expressing an easily traceable fluorescent or luciferase reporter protein has significantly contributed to progress in influenza research. However, researchers have been forced to select a fluorescent or a luciferase reporter gene due to the restricted capacity of the influenza viral genome for including foreign sequences. To overcome this limitation, we generated, for the first time, a recombinant replication-competent bireporter IAV (BIRFLU) that stably expresses two reporter genes (one fluorescent and one luciferase) to track IAV infections in vitro and in vivo The combination of cutting-edge techniques from molecular biology, animal research, and imaging technologies brings researchers the unique opportunity to use this new generation of reporter-expressing IAV to study viral infection dynamics in both cultured cells and animal models of viral infection.
Asunto(s)
Genes Reporteros/efectos de los fármacos , Virus de la Influenza A/metabolismo , Mediciones Luminiscentes/métodos , Animales , Antivirales/farmacología , Perros , Femenino , Genes Reporteros/genética , Ingeniería Genética/métodos , Genoma Viral/efectos de los fármacos , Células HEK293 , Interacciones Microbiota-Huesped/fisiología , Humanos , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Proteínas Luminiscentes/genética , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Imagen Óptica/métodos , Infecciones por Orthomyxoviridae/virología , Replicación Viral/efectos de los fármacosRESUMEN
Histone deacetylase 2 (HDAC2), a critical determinant of chromatin remodeling, is reduced as a consequence of oxidative stress-mediated DNA damage and impaired repair. Cigarette smoke (CS) exposure causes DNA damage and cellular senescence. However, no information is available on the role of HDAC2 in CS-induced DNA damage, stress-induced premature senescence (SIPS), and senescence-associated secretory phenotype (SASP) during the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. We hypothesized that CS causes persistent DNA damage and cellular senescence via HDAC2-dependent mechanisms. We used HDAC2 global knockout (KO) and HDAC2 lung epithelial cell-specific KO [Clara cell-specific HDAC2 deletion (HDAC2 CreCC10)] mice to determine whether HDAC2 is a major player in CS-induced oxidative stress, SIPS, and SASP. HDAC2 KO mice exposed to CS show exaggerated DNA damage, inflammatory response, and decline in lung function leading to airspace enlargement. Chronic CS exposure augments lung senescence-associated ß-galactosidase activity in HDAC2 KO, but not in HDAC2 CreCC10 mice. HDAC2 lung epithelial cell-specific KO did not further augment CS-induced inflammatory response and airspace enlargement but instead caused an increase in lymphoid aggregate formation. Our study reveals that HDAC2 is a key player regulating CS-induced DNA damage, inflammatory response, and cellular senescence leading to COPD/emphysema.-Sundar, I. K., Rashid, K., Gerloff, J., Rangel-Moreno, J., Li, D., Rahman, I. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema.
Asunto(s)
Senescencia Celular/genética , Histona Desacetilasa 2/genética , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfisema Pulmonar/genética , Animales , Daño del ADN/genética , Células Epiteliales/patología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/genética , Humo/efectos adversos , Fumar/efectos adversosRESUMEN
Neutrophils are well characterized as mediators of peripheral tissue damage in lupus, but it remains unclear whether they influence loss of self-tolerance in the adaptive immune compartment. Lupus neutrophils produce elevated levels of factors known to fuel autoantibody production, including IL-6 and B cell survival factors, but also reactive oxygen intermediates, which can suppress lymphocyte proliferation. To assess whether neutrophils directly influence the progression of autoreactivity in secondary lymphoid organs (SLOs), we characterized the localization and cell-cell contacts of splenic neutrophils at several stages in the progression of disease in the NZB/W murine model of lupus. Neutrophils accumulate in SLO over the course of lupus progression, preferentially localizing near T lymphocytes early in disease and B cells with advanced disease. RNA sequencing reveals that the splenic neutrophil transcriptional program changes significantly over the course of disease, with neutrophil expression of anti-inflammatory mediators peaking during early-stage and midstage disease, and evidence of neutrophil activation with advanced disease. To assess whether neutrophils exert predominantly protective or deleterious effects on loss of B cell self-tolerance in vivo, we depleted neutrophils at different stages of disease. Neutrophil depletion early in lupus resulted in a striking acceleration in the onset of renal disease, SLO germinal center formation, and autoreactive plasma cell production. In contrast, neutrophil depletion with more advanced disease did not alter systemic lupus erythematosus progression. These results demonstrate a surprising temporal and context-dependent role for neutrophils in restraining autoreactive B cell activation in lupus.
Asunto(s)
Autoinmunidad , Progresión de la Enfermedad , Centro Germinal/inmunología , Lupus Eritematoso Sistémico/inmunología , Neutrófilos/inmunología , Animales , Autoanticuerpos/biosíntesis , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Centro Germinal/citología , Lupus Eritematoso Sistémico/fisiopatología , Activación de Linfocitos , Ratones , Ratones Endogámicos NZB , Neutrófilos/fisiología , Análisis de Secuencia de ARN , Bazo/citología , Bazo/inmunología , Linfocitos T/inmunologíaRESUMEN
The omentum is a site of B1 cell lymphopoiesis and immune responsiveness to T cell-independent antigens. However, it is unknown whether it supports immune responses independently of conventional lymphoid organs. We showed that the omentum collected antigens and cells from the peritoneal cavity and supported T cell-dependent B cell responses, including isotype switching, somatic hypermutation, and limited affinity maturation, despite the lack of identifiable follicular dendritic cells. The omentum also supported CD4+ and CD8+ T cell responses to peritoneal antigens and recruited effector T cells primed in other locations. Unlike conventional lymphoid organs, milky spots in the omentum developed in the absence of lymphoid tissue-inducer cells, but required the chemokine CXCL13. Although the lymphoid architecture of milky spots was disrupted in lymphotoxin-deficient mice, normal architecture was restored by reconstitution with lymphotoxin-sufficient hematopoietic cells. These results indicate that the milky spots of the omentum function as unique secondary lymphoid organs that promote immunity to peritoneal antigens.
Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Quimiocina CXCL13/inmunología , Sistema Linfático/inmunología , Tejido Linfoide/inmunología , Epiplón/inmunología , Animales , Antígenos/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Sistema Linfático/metabolismo , Tejido Linfoide/citología , Tejido Linfoide/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Epiplón/citología , Epiplón/metabolismo , Peritoneo/citología , Peritoneo/inmunología , Peritoneo/metabolismoRESUMEN
The importance of T helper type 1 (Th1) cell immunity in host resistance to the intracellular bacterium Francisella tularensis is well established. However, the relative roles of interleukin (IL)-12-Th1 and IL-23-Th17 cell responses in immunity to F. tularensis have not been studied. The IL-23-Th17 cell pathway is critical for protective immunity against extracellular bacterial infections. In contrast, the IL-23-Th17 cell pathway is dispensable for protection against intracellular pathogens such as Mycobacteria. Here we show that the IL-23-Th17 pathway regulates the IL-12-Th1 cell pathway and was required for protective immunity against F.tularensis live vaccine strain. We show that IL-17A, but not IL-17F or IL-22, induced IL-12 production in dendritic cells and mediated Th1 responses. Furthermore, we show that IL-17A also induced IL-12 and interferon-gamma production in macrophages and mediated bacterial killing. Together, these findings illustrate a biological function for IL-17A in regulating IL-12-Th1 cell immunity and host responses to an intracellular pathogen.
Asunto(s)
Francisella tularensis , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Células TH1/inmunología , Tularemia/inmunología , Tularemia/prevención & control , Animales , Células Dendríticas/inmunología , Francisella tularensis/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de SeñalRESUMEN
The series of events leading to tertiary lymphoid organ (TLO) formation in mucosal organs following tissue damage remain unclear. Using a virus-induced model of autoantibody formation in the salivary glands of adult mice, we demonstrate that IL-22 provides a mechanistic link between mucosal infection, B-cell recruitment, and humoral autoimmunity. IL-22 receptor engagement is necessary and sufficient to promote differential expression of chemokine (C-X-C motif) ligand 12 and chemokine (C-X-C motif) ligand 13 in epithelial and fibroblastic stromal cells that, in turn, is pivotal for B-cell recruitment and organization of the TLOs. Accordingly, genetic and therapeutic blockade of IL-22 impairs and reverses TLO formation and autoantibody production. Our work highlights a critical role for IL-22 in TLO-induced pathology and provides a rationale for the use of IL-22-blocking agents in B-cell-mediated autoimmune conditions.
Asunto(s)
Quimiocinas CXC/biosíntesis , Interleucinas/fisiología , Tejido Linfoide/metabolismo , Animales , Autoanticuerpos/biosíntesis , Linfocitos B/metabolismo , Quimiocinas CXC/metabolismo , Interleucinas/genética , Ratones , Ratones Noqueados , Interleucina-22RESUMEN
Despite the use of multidrug therapy, leprosy remains endemic in some countries. The association of several human leucocyte antigen (HLA) alleles and gene polymorphisms with leprosy has been demonstrated in many populations, but the major immune contributors associated to the spectrum of leprosy have not been defined yet. In this study, genotyping of HLA-A, -B, -DR, and -DQ alleles was performed in leprosy patients (n = 113) and control subjects (n = 117) from the region with the highest incidence for the disease in México. The odds of developing leprosy and lepromatous subtype were 2.12- and 2.74-fold higher in carriers of HLA-A*28, and 2.48- and 4.14-fold higher for leprosy and dimorphic subtype in carriers of DQB1*06. Interestingly, DQB1*07 was overrepresented in healthy individuals, compared to patients with leprosy (OR = 0.08) and the lepromatous subtype (OR = 0.06). These results suggest that HLA-A*28 is a marker for predisposition to leprosy and the lepromatous subtype and DQB1*06 to leprosy and the dimorphic subtype, while DQB1*07 might be a resistance marker in this Mestizo population.
Asunto(s)
Antígenos HLA/genética , Indígenas Norteamericanos/genética , Lepra/genética , Adulto , Anciano , Alelos , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , México , Persona de Mediana Edad , Polimorfismo GenéticoRESUMEN
Serine proteinase inhibitor, clade E, member 2 (SERPINE2), is a cell- and extracellular matrix-associated inhibitor of thrombin. Although SERPINE2 is a candidate susceptibility gene for chronic obstructive pulmonary disease, the physiologic role of this protease inhibitor in lung development and homeostasis is unknown. We observed spontaneous monocytic-cell infiltration in the lungs of Serpine2-deficient (SE2(-/-)) mice, beginning at or before the time of lung maturity, which resulted in lesions that resembled bronchus-associated lymphoid tissue (BALT). The initiation of lymphocyte accumulation in the lungs of SE2(-/-) mice involved the excessive expression of chemokines, cytokines, and adhesion molecules that are essential for BALT induction, organization, and maintenance. BALT-like lesion formation in the lungs of SE2(-/-) mice was also associated with a significant increase in the activation of thrombin, a recognized target of SE2, and excess stimulation of NF-κB, a major regulator of chemokine expression and inflammation. Finally, systemic delivery of thrombin rapidly stimulated lung chemokine expression in vivo These data uncover a novel mechanism whereby loss of serine protease inhibition leads to lung lymphocyte accumulation.-Solleti, S. K., Srisuma, S., Bhattacharya, S., Rangel-Moreno, J., Bijli, K. M., Randall, T. D., Rahman, A., Mariani, T. J. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation.
Asunto(s)
Bronquios/patología , Pulmón/citología , Linfocitos/fisiología , Tejido Linfoide/patología , Serpina E2/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Serpina E2/genéticaRESUMEN
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world's population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered "hypervirulent" as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1ß through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains.
Asunto(s)
Inmunidad Innata/genética , Interleucina-17/fisiología , Mycobacterium tuberculosis/inmunología , Animales , Células Cultivadas , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/inmunología , Citoprotección/genética , Citoprotección/inmunología , Femenino , Interleucina-17/genética , Interleucina-1beta/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Receptores Tipo I de Interleucina-1/genética , Receptor Toll-Like 2/fisiología , Tuberculosis/genética , Tuberculosis/inmunologíaRESUMEN
Autoantibodies to dsDNA, produced by autoreactive plasma cells (PCs), are a hallmark of systemic lupus erythematosus and play a key role in disease pathogenesis. Recent data suggest that autoreactive PCs accumulate not only in lymphoid tissues, but also in the inflamed kidney in lupus nephritis. We hypothesized that the variable efficacy of anti-CD20 (rituximab)-mediated B cell depletion in systemic lupus erythematosus may be related to the absence of an effect on autoreactive PCs in the kidney. In this article, we report that an enrichment of autoreactive dsDNA Ab-secreting cells (ASCs) in the kidney of lupus-prone mice (up to 40% of the ASCs) coincided with a progressive increase in splenic germinal centers and PCs, and an increase in renal expression for PC survival factors (BAFF, a proliferation-inducing ligand, and IL-6) and PC attracting chemokines (CXCL12). Short-term treatment with anti-CD20 (4 wk) neither decreased anti-dsDNA nor IgG ASCs in different anatomical locations. However, long-term treatment (12 wk) significantly reduced both IgG- and dsDNA-specific ASCs. In addition, long-term treatment substantially decreased splenic germinal center and PC generation, and unexpectedly reduced the expression for PC survival factors in the kidney. These results suggest that prolonged B cell depletion may alter the PC survival niche in the kidney, regulating the accumulation and maintenance of autoreactive PCs.