Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 183(3): 802-817.e24, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33053319

RESUMEN

Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.


Asunto(s)
Enfermedad , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ensamble y Desensamble de Cromatina , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enfermedad/genética , Humanos , Mutación Missense/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cell ; 175(5): 1272-1288.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30343899

RESUMEN

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes are multi-subunit molecular machines that play vital roles in regulating genomic architecture and are frequently disrupted in human cancer and developmental disorders. To date, the modular organization and pathways of assembly of these chromatin regulators remain unknown, presenting a major barrier to structural and functional determination. Here, we elucidate the architecture and assembly pathway across three classes of mSWI/SNF complexes-canonical BRG1/BRM-associated factor (BAF), polybromo-associated BAF (PBAF), and newly defined ncBAF complexes-and define the requirement of each subunit for complex formation and stability. Using affinity purification of endogenous complexes from mammalian and Drosophila cells coupled with cross-linking mass spectrometry (CX-MS) and mutagenesis, we uncover three distinct and evolutionarily conserved modules, their organization, and the temporal incorporation of these modules into each complete mSWI/SNF complex class. Finally, we map human disease-associated mutations within subunits and modules, defining specific topological regions that are affected upon subunit perturbation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Animales , Cromatina/química , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/genética , Drosophila/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Mutagénesis , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/análisis , Factores de Transcripción/genética
3.
Mol Cell ; 78(5): 960-974.e11, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330456

RESUMEN

Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.


Asunto(s)
Eritropoyesis/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Bases de Datos Factuales , Regulación de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Proteómica/métodos , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 298(10): 102433, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041630

RESUMEN

TFIIH is an evolutionarily conserved complex that plays central roles in both RNA polymerase II (pol II) transcription and DNA repair. As an integral component of the pol II preinitiation complex, TFIIH regulates pol II enzyme activity in numerous ways. The TFIIH subunit XPB/Ssl2 is an ATP-dependent DNA translocase that stimulates promoter opening prior to transcription initiation. Crosslinking-mass spectrometry and cryo-EM results have shown a conserved interaction network involving XPB/Ssl2 and the C-terminal Hub region of the TFIIH p52/Tfb2 subunit, but the functional significance of specific residues is unclear. Here, we systematically mutagenized the HubA region of Tfb2 and screened for growth phenotypes in a TFB6 deletion background in Saccharomyces cerevisiae. We identified six lethal and 12 conditional mutants. Slow growth phenotypes of all but three conditional mutants were relieved in the presence of TFB6, thus identifying a functional interaction between Tfb2 HubA mutants and Tfb6, a protein that dissociates Ssl2 from TFIIH. Our biochemical analysis of Tfb2 mutants with severe growth phenotypes revealed defects in Ssl2 association, with similar results in human cells. Further characterization of these tfb2 mutant cells revealed defects in GAL gene induction, and reduced occupancy of TFIIH and pol II at GAL gene promoters, suggesting that functionally competent TFIIH is required for proper pol II recruitment to preinitiation complexes in vivo. Consistent with recent structural models of TFIIH, our results identify key residues in the p52/Tfb2 HubA domain that are required for stable incorporation of XPB/Ssl2 into TFIIH and for pol II transcription.


Asunto(s)
ADN Helicasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factor de Transcripción TFIIH , Humanos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Mutagénesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312822

RESUMEN

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Hipocampo/patología , Actinas/genética , Adenosina Trifosfato/genética , Animales , Trastorno del Espectro Autista/patología , Conducta Animal/fisiología , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Dendritas/genética , Dendritas/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Factores de Transcripción/genética
6.
Curr Opin Hematol ; 28(3): 150-157, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714970

RESUMEN

PURPOSE OF REVIEW: Erythropoiesis is a hierarchical process by which hematopoietic stem cells give rise to red blood cells through gradual cell fate restriction and maturation. Deciphering this process requires the establishment of dynamic gene regulatory networks (GRNs) that predict the response of hematopoietic cells to signals from the environment. Although GRNs have historically been derived from transcriptomic data, recent proteomic studies have revealed a major role for posttranscriptional mechanisms in regulating gene expression during erythropoiesis. These new findings highlight the need to integrate proteomic data into GRNs for a refined understanding of erythropoiesis. RECENT FINDINGS: Here, we review recent proteomic studies that have furthered our understanding of erythropoiesis with a focus on quantitative mass spectrometry approaches to measure the abundance of transcription factors and cofactors during differentiation. Furthermore, we highlight challenges that remain in integrating transcriptomic, proteomic, and other omics data into a predictive model of erythropoiesis, and discuss the future prospect of single-cell proteomics. SUMMARY: Recent proteomic studies have considerably expanded our knowledge of erythropoiesis beyond the traditional transcriptomic-centric perspective. These findings have both opened up new avenues of research to increase our understanding of erythroid differentiation, while at the same time presenting new challenges in integrating multiple layers of information into a comprehensive gene regulatory model.


Asunto(s)
Eritropoyesis/fisiología , Perfilación de la Expresión Génica , Proteoma , Proteómica , Transcriptoma , Animales , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Proteómica/métodos , Análisis de la Célula Individual
7.
EMBO J ; 34(9): 1244-58, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25755249

RESUMEN

LXR-cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3-LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Colesterol/metabolismo , Macrófagos/metabolismo , Coactivadores de Receptor Nuclear/genética , Receptores Nucleares Huérfanos/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Receptores X del Hígado , Espectrometría de Masas/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transducción de Señal , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo
9.
Mol Syst Biol ; 13(3): 919, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28320772

RESUMEN

Managing trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer Desulfovibrio vulgaris to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Methanococcus maripaludis Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation. We have characterized the mechanism for collapse by conducting RNA-seq analysis, proteomics, microcalorimetry, and single-cell transcriptome analysis. We demonstrate that the collapse was caused by conditional gene regulation, which drove precipitous decline in intracellular abundance of essential transcripts and proteins, imposing greater energetic burden of regulation to restore function in a fluctuating environment.


Asunto(s)
Desulfovibrio vulgaris/crecimiento & desarrollo , Methanococcus/crecimiento & desarrollo , Biología de Sistemas/métodos , Desulfovibrio vulgaris/genética , Evolución Molecular Dirigida , Perfilación de la Expresión Génica , Methanococcus/genética , Oxidación-Reducción , Fenotipo , Proteómica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Sulfatos/metabolismo
10.
Genes Dev ; 23(24): 2887-99, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19948764

RESUMEN

The kinetochore is a macromolecular complex that controls chromosome segregation and cell cycle progression. When sister kinetochores make bioriented attachments to microtubules from opposite poles, the spindle checkpoint is silenced. Biorientation and the spindle checkpoint are regulated by a balance between the Ipl1/Aurora B protein kinase and the opposing activity of protein phosphatase I (PP1). However, little is known about the regulation of PP1 localization and activity at the kinetochore. Here, we developed a method to purify centromere-bound kinetochores and used quantitative proteomics to identify the Fin1 protein as a PP1 regulatory subunit. The Fin1/PP1 complex is regulated by phosphorylation and 14-3-3 protein binding. When Fin1 is mislocalized, bipolar spindles fail to assemble but the spindle checkpoint is inappropriately silenced due to PP1 activity. These data suggest that Fin1 is a PP1 regulatory subunit whose spatial and temporal activity must be precisely controlled to ensure genomic stability.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Regulación Fúngica de la Expresión Génica , Cinetocoros/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/metabolismo , Ciclo Celular/fisiología , Cromosomas Fúngicos/genética , Unión Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
11.
Nature ; 468(7323): 576-9, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21107429

RESUMEN

Kinetochores are macromolecular machines that couple chromosomes to dynamic microtubule tips during cell division, thereby generating force to segregate the chromosomes. Accurate segregation depends on selective stabilization of correct 'bi-oriented' kinetochore-microtubule attachments, which come under tension as the result of opposing forces exerted by microtubules. Tension is thought to stabilize these bi-oriented attachments indirectly, by suppressing the destabilizing activity of a kinase, Aurora B. However, a complete mechanistic understanding of the role of tension requires reconstitution of kinetochore-microtubule attachments for biochemical and biophysical analyses in vitro. Here we show that native kinetochore particles retaining the majority of kinetochore proteins can be purified from budding yeast and used to reconstitute dynamic microtubule attachments. Individual kinetochore particles maintain load-bearing associations with assembling and disassembling ends of single microtubules for >30 min, providing a close match to the persistent coupling seen in vivo between budding yeast kinetochores and single microtubules. Moreover, tension increases the lifetimes of the reconstituted attachments directly, through a catch bond-like mechanism that does not require Aurora B. On the basis of these findings, we propose that tension selectively stabilizes proper kinetochore-microtubule attachments in vivo through a combination of direct mechanical stabilization and tension-dependent phosphoregulation.


Asunto(s)
Cromosomas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética
12.
PLoS Genet ; 9(2): e1003216, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408894

RESUMEN

The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-C(Mif2) protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability.


Asunto(s)
Proteínas Portadoras , Proteínas Cromosómicas no Histona , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/genética , Centrómero/genética , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
J Proteome Res ; 12(5): 2034-44, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23540550

RESUMEN

Blood is an ideal window for viewing our health and disease status. Because blood circulates throughout the entire body and carries secreted, shed, and excreted signature proteins from every organ and tissue type, it is thus possible to use the blood proteome to achieve a comprehensive assessment of multiple-organ physiology and pathology. To date, the blood proteome has been frequently examined for diseases of individual organs; studies on compound insults impacting multiple organs are, however, elusive. We believe that a characterization of peripheral blood for organ-specific proteins affords a powerful strategy to allow early detection, staging, and monitoring of diseases and their treatments at a whole-body level. In this paper we test this hypothesis by examining a mouse model of acetaminophen (APAP)-induced hepatic and extra-hepatic toxicity. We used a glycocapture-assisted global quantitative proteomics (gagQP) approach to study serum proteins and validated our results using Western blot. We discovered in mouse sera both hepatic and extra-hepatic organ-specific proteins. From our validation, it was determined that selected organ-specific proteins had changed their blood concentration during the course of toxicity development and recovery. Interestingly, the peak responding time of proteins specific to different organs varied in a time-course study. The collected molecular information shed light on a complex, dynamic, yet interweaving, multiorgan-enrolled APAP toxicity. The developed technique as well as the identified protein markers is translational to human studies. We hope our work can broaden the utility of blood proteomics in diagnosis and research of the whole-body response to pathogenic cues.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Proteínas Sanguíneas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Proteoma/metabolismo , Alanina Transaminasa/metabolismo , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/aislamiento & purificación , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Glicosilación , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Especificidad de Órganos , Mapas de Interacción de Proteínas , Proteoma/química , Proteoma/aislamiento & purificación
14.
Nat Genet ; 33(3): 349-55, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12590263

RESUMEN

We describe a generic strategy for determining the specific composition, changes in the composition, and changes in the abundance of protein complexes. It is based on the use of isotope-coded affinity tag (ICAT) reagents and mass spectrometry to compare the relative abundances of tryptic peptides derived from suitable pairs of purified or partially purified protein complexes. In a first application, the genuine protein components of a large RNA polymerase II (Pol II) preinitiation complex (PIC) were distinguished from a background of co-purifying proteins by comparing the relative abundances of peptides derived from a control sample and the specific complex that was purified from nuclear extracts by a single-step promoter DNA affinity procedure. In a second application, peptides derived from immunopurified STE12 protein complexes isolated from yeast cells in different states were used to detect quantitative changes in the abundance of the complexes, and to detect dynamic changes in the composition of the samples. The use of quantitative mass spectrometry to guide identification of specific complex components in partially purified samples, and to detect quantitative changes in the abundance and composition of protein complexes, provides the researcher with powerful new tools for the comprehensive analysis of macromolecular complexes.


Asunto(s)
Proteómica/métodos , Marcadores de Afinidad , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Sustancias Macromoleculares , Espectrometría de Masas , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
15.
Nat Genet ; 36(7): 707-13, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220919

RESUMEN

We previously described the use of quantitative proteomics to study macromolecular complexes. Applying the method to analyze a yeast RNA polymerase II preinitiation complex, we identified a new 8-kDa protein, encoded by the uncharacterized open reading frame YDR079c-a, as a potential new component of the preinitiation complex. Here we show that YDR079c-a is a bona fide component of polymerase II preinitiation complexes and investigate its role in transcription. YDR079c-a is recruited to promoters both in vivo and in vitro and is required for efficient transcription in vitro and for normal induction of GAL genes. In addition, YDR079c-a is a core component of general transcription and DNA repair factor IIH and is required for efficient recruitment of TFIIH to a promoter. Yeast lacking YDR079c-a grow slowly, and, like strains carrying mutations in core TFIIH subunits, are sensitive to ultraviolet radiation. YDR079c-a is conserved throughout evolution, and mutations in the human ortholog account for a DNA repair-deficient form of the tricothiodystrophy disorder called TTD-A(2). The identification of a new, evolutionarily conserved, core TFIIH subunit is essential for our understanding of TFIIH function in transcription, DNA repair and human disease.


Asunto(s)
Reparación del ADN , Factores de Transcripción TFII/fisiología , Transcripción Genética , ADN Polimerasa II/metabolismo , Plásmidos , Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIH , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
16.
Nat Genet ; 36(7): 714-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220921

RESUMEN

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair-deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Asunto(s)
Reparación del ADN , Factores de Transcripción TFII/fisiología , Transcripción Genética , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Microinyecciones , Sistemas de Lectura Abierta , Factor de Transcripción TFIIH , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética
17.
Proc Natl Acad Sci U S A ; 106(43): 18303-8, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19822740

RESUMEN

Using a proteomics screen, we have identified the methyltransferase G9a as an interacting partner of the hematopoietic activator NF-E2. We show that G9a is recruited to the beta-globin locus in a NF-E2-dependent manner and spreads over the entire locus. While G9a is often regarded as a corepressor, knocking down this protein in differentiating adult erythroid cells leads to repression of the adult beta(maj) globin gene and aberrant reactivation of the embryonic beta-like globin gene E(y). While in adult cells G9a maintains E(y) in a repressed state via dimethylation of histone H3 at lysines 9 and 27, it activates beta(maj) transcription in a methyltransferase-independent manner. Interestingly, the demethylase UTX is recruited to the beta(maj) (but not the E(y)) promoter where it antagonizes G9a-dependent H3K27 dimethylation. Collectively, these results reveal a dual role for G9a in maintaining proper expression (both repression and activation) of the beta-globin genes in differentiating adult erythroid cells.


Asunto(s)
Envejecimiento , Células Eritroides/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Transcripción Genética , Globinas beta/genética , Animales , Diferenciación Celular , Línea Celular , Células Eritroides/citología , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Ratones , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Unión Proteica
18.
Neuron ; 55(2): 201-15, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17640523

RESUMEN

Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Krüppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-like ATPases, Brg and Brm. As neural progenitors exit the cell cycle, these subunits are replaced by the homologous BAF45b, BAF45c, and BAF53b. BAF45a/53a subunits are necessary and sufficient for neural progenitor proliferation. Preventing the subunit switch impairs neuronal differentiation, indicating that this molecular event is essential for the transition from neural stem/progenitors to postmitotic neurons. More broadly, these studies suggest that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits.


Asunto(s)
Diferenciación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Complejos Multienzimáticos/metabolismo , Células Madre Multipotentes/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Células Madre Multipotentes/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética
19.
Proc Natl Acad Sci U S A ; 105(7): 2481-6, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18272476

RESUMEN

Enhancers have been functionally described for >35 years, but the molecular principles underlying the integration of regulatory inputs to alternate gene enhancers used during mammalian organogenesis remain incompletely understood. Using a combination of in vivo enhancer mapping and proteomics approaches, we have established that two distant and distinct early enhancers, each requiring different transcription complexes, are required for full activation of the gene encoding the pituitary lineage determining factor, Pit1. A transcription factor belonging to the "giant, multiple-homeodomain and zinc finger family," Atbf1, serves as a novel pituitary regulator for one of the two required enhancers as shown by genetic and in vitro analysis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Factor de Transcripción Pit-1/metabolismo , Animales , Secuencia de Bases , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Epistasis Genética , Genoma/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación/genética , Hipófisis/metabolismo , Unión Proteica , Proteómica , Factores de Tiempo , Factor de Transcripción Pit-1/genética
20.
Proc Natl Acad Sci U S A ; 105(24): 8309-14, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18550811

RESUMEN

Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Células 3T3 , Alelos , Secuencia de Aminoácidos , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/genética , Impresión Genómica , Genómica , Humanos , Elementos Aisladores , Factor II del Crecimiento Similar a la Insulina/genética , Células Jurkat , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteómica , Proteínas Represoras/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA