Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(18): 8059-8069, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38655576

RESUMEN

Ionic liquids (ILs) have significant potential for eco-friendly extraction of uranium from aqueous solutions, which is critical for nuclear technology, fuel cycle management, and environmental protection. This study examines the impact of the adjustable hydrophobic/hydrophilic properties of ILs on the removal of uranium(VI) (UO22+) from aqueous solutions utilizing both a novel hydrophilic IL (1-butoxyethyl-1-methylmorpholinium butoxyethylphosphite - Mor1-2O4-BOEP) and 1-heptyl-1-methylmorpholinium heptylphosphite (Mor1-7-HP) as an example of a hydrophobic IL with a similar structure. The transfer mechanism of uranyl ions from water to organic or solid phases closely depends on the physicochemical properties of ILs, especially their hydrophobicity. The hydrophobic Mor1-7-HP extracts uranyl via neutral complex formation as UO2(NO3)2-(Mor1-7-HP)2. Conversely, hydrophilic Mor1-2O4-BOEP induced selective precipitation as UO2(NO3)-(BOEP), transferring uranyl to the solid phase. Optimization of the working parameters, in terms of acidity of the aqueous solution and amount of ILs used, allowed the extraction of over 98% of U(VI). The stoichiometry of the organic complex and the precipitate was determined using physicochemical techniques. These tunable H-phosphonate-based ILs have advantages over traditional solvent extraction and conventional ILs, allowing easier handling, improved selectivity, and lower environmental impact. This work advances uranium separation techniques with applications in hydrometallurgy, particularly in the treatment of wastewater and radioactive waste for sustainable uranium recovery.

2.
Nanotechnology ; 35(42)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39025079

RESUMEN

Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.

3.
RSC Adv ; 14(12): 8007-8015, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38454949

RESUMEN

Ensuring food security is crucial for public health, and the presence of mycotoxins, produced by fungi in improperly stored processed or unprocessed food, poses a significant threat. This research introduces a novel approach - a disposable aptasensing platform designed for the detection of ochratoxin A (OTA). The platform employs gold-nanostructured screen-printed carbon electrodes functionalized with a ferrocene derivative, serving as an integrated faradaic transducing system, and an anti-OTA aptamer as a bioreceptor site. Detection relies on the ferrocene electrochemical signal changes induced by the aptamer folding in the presence of the target molecule. Remarkably sensitive, the platform detects OTA within the range of 0.5 to 70 ng mL-1 and a detection limit of 11 pg mL-1. This limit is approximately 200 times below the levels stipulated by the European Commission for agricultural commodities. Notably, the sensing device exhibits efficacy in detecting OTA in complex media, such as roasted coffee beans and wine, without the need for sample pretreatment, yielding accurate recoveries. Furthermore, while label-free electrochemical aptasensors have proliferated, this study addresses a gap in understanding the binding mechanisms of some aptasensors. To enhance the experimental findings, a theoretical study was conducted to underscore the specificity of the anti-OTA aptamer as a donor for OTA detection. The molecular docking technique was employed to unveil the key binding region of the aptamer, providing valuable insights into the aptasensor specificity.

4.
Anal Chim Acta ; 1305: 342583, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677845

RESUMEN

P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs/piRs) are a class of small noncoding RNAs that play a crucial role in regulating various biological processes, including carcinogenesis. One specific piRNA, piR-651, has been reported to be overexpressed in both human blood serum and solid cancer tissues, that can be used a viable biomarker in cancer diagnosis. Early diagnosis of cancer can help reduce the burden of the disease and improve survival rates. In the present work, we report for the first time a smartphone-based colorimetric biosensor for highly sensitive and specific detection of piR-651 thanks to an enzymatic signal amplification, which yielded high colorimetric intensities. Indeed, a heteroduplex DNA:RNA was formed in the presence of piR-651 with the capture DNA probe immobilized on the magnetic beads for easy magnetic separation. Then, a HRP tethered to anti-DNA:RNA (S9.6) was used to reveal the DNA-RNA heteroduplex formed by catalyzing the oxidation of TMB substrate into colorimetric TMBox, which absorbs at 630 nm. The absorbance is positively proportional to the piR-651 concentrations. On the other hand, the colorimetric product of the assay can be photographed with a smartphone camera and analyzed using ImageJ software. Using a smartphone and under optimal conditions, the biosensor responded linearly to the logarithm of piRNA-651 from 8 fM to 100 pM with a detection limit of 2.3 fM and discriminates against other piRNAs. It was also successfully applied to the determination of piRNA-651 levels in spiked human serum.


Asunto(s)
Técnicas Biosensibles , ARN Interferente Pequeño , Teléfono Inteligente , Humanos , ARN Interferente Pequeño/química , Técnicas Biosensibles/métodos , Colorimetría , ADN/química , Límite de Detección , ARN de Interacción con Piwi
5.
RSC Adv ; 14(17): 12071-12080, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38628480

RESUMEN

The SARS-CoV-2 (COVID-19) pandemic had a strong impact on societies and economies worldwide and tests for high-performance detection of SARS-CoV-2 biomarkers are still needed for potential future outbreaks of the disease. In this paper, we present the different steps for the design of an aptamer-based surface-enhanced Raman scattering (BioSERS) sensing chip capable of detecting the coronavirus nucleocapsid protein (N protein) in spiked phosphate-buffered solutions and real samples of human blood serum. Optimization of the preparation steps in terms of the aptamer concentration used for the functionalization of the silver nanoparticles, time for affixing the aptamer, incubation time with target protein, and insulation of the silver active surface with cysteamine, led to a sensitive BioSERS chip, which was able to detect the N protein in the range from 1 to 75 ng mL-1 in spiked phosphate-buffered solutions with a detection limit of 1 ng mL-1 within 30 min. Furthermore, the BioSERS chip was used to detect the target protein in scarcely spiked human serum. This study demonstrates the possibility of a clinical application that can improve the detection limit and accuracy of the currently commercialized SARS-CoV-2 immunodiagnostic kit. Additionally, the system is modular and can be applied to detect other proteins by only changing the aptamer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA