Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Immunol ; 20(5): 534-545, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962593

RESUMEN

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Asunto(s)
Proliferación Celular , Fibroblastos/inmunología , Interleucina-17/inmunología , Ganglios Linfáticos/inmunología , Células del Estroma/inmunología , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Fibroblastos/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Células del Estroma/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
2.
Childs Nerv Syst ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884777

RESUMEN

Pediatric low-grade gliomas (pLGGs) are the most common brain tumor types affecting children. Although gross-total resection remains the treatment of choice, many tumors are not amenable to complete removal, because they either involve midline structures, such as the optic chiasm or hypothalamus, and are not conducive to aggressive resection, or have diffuse biological features and blend with the surrounding brain. Historically, radiation therapy was used as the second-line option for disease control, but with the recognition that this often led to adverse long-term sequelae, particularly in young children, conventional chemotherapy assumed a greater role in initial therapy for unresectable tumors. A variety of agents demonstrated activity, but long-term disease control was suboptimal, with more than 50% of tumors exhibiting disease progression within 5 years. More recently, it has been recognized that a high percentage of these tumors in children exhibit constitutive activation of the mitogen-activated protein kinase (MAPK) pathway because of BRAF translocations or mutations, NFI mutations, or a host of other anomalies that converged on MAPK. This led to phase 1, 2, and 3 trials that explored the activity of blocking this signaling pathway, and the efficacy of this approach compared to conventional chemotherapy. Despite initial promise of these strategies, not all children tolerate this therapy, and many tumors resume growth once MAPK inhibition is stopped, raising concern that long-term and potentially life-long treatment will be required to maintain tumor control, even among responders. This observation has led to interest in other treatments, such as immunotherapy, that may delay or avoid the need for additional treatments. This chapter will summarize the place of immunotherapy in the current armamentarium for these tumors and discuss prior results and future options to improve disease control, with a focus on our prior efforts and experience in this field.

3.
J Immunol ; 203(3): 665-675, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31209103

RESUMEN

ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is best known for its role in Alzheimer's disease amyloid plaque formation but also contributes to neurodegenerative processes triggered by CNS injury. In this article, we report that BACE1 is expressed in murine CD4+ T cells and regulates signaling through the TCR. BACE1-deficient T cells have reduced IL-17A expression under Th17 conditions and reduced CD73 expression in Th17 and inducible T regulatory cells. However, induction of the Th17 and T regulatory transcription factors RORγt and Foxp3 was unaffected. BACE1-deficient T cells showed impaired pathogenic function in experimental autoimmune encephalomyelitis. These data identify BACE1 as a novel regulator of T cell signaling pathways that impact autoimmune inflammatory T cell function.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Autoinmunidad/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , 5'-Nucleotidasa/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Factores de Transcripción Forkhead/biosíntesis , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/biosíntesis
4.
Cell Immunol ; 358: 104219, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33039896

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.


Asunto(s)
Biomarcadores/análisis , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Genómica/métodos , Humanos , Proteómica/métodos , Biología de Sistemas/métodos
5.
Cell Immunol ; 331: 38-48, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29789121

RESUMEN

The human autoimmune disease-associated HLA alleles HLA-DR2b (DRB1*1501) and HLA-DR4 (DRB1*0401) are strongly linked to increased susceptibility for multiple sclerosis (MS) and rheumatoid arthritis (RA), respectively. The underlying mechanisms are not fully understood, but these MHC alleles may shape the repertoire of pathogenic T cells via central tolerance. The transcription factor autoimmune regulator (AIRE) promotes central T cell tolerance via ectopic expression of tissue-specific antigens (TSAs). Aire deficiency in humans causes autoimmune polyendocrinopathy syndrome type 1 (APS1), and Aire knockout mice (Aire-/-) develop spontaneous autoimmune pathology characterized by multi-organ lymphocytic infiltrates. Here, we asked whether impaired TSAs gene expression in the absence of Aire promoted spontaneous MS- or RA-like autoimmune pathology in the context of human HLA alleles in HLA-DR2b or HLA-DR4 transgenic (tg) mice. The results show that reduced TSAs gene expression in the thymus of Aire-deficient HLA-DR2b or HLA-DR4 tg mice corresponded to mild spontaneous inflammatory infiltrates in salivary glands, liver, and pancreas. Moreover, Aire-deficiency modestly enhanced experimental autoimmune encephalomyelitis (EAE) in HLA-DR tg mice, but the animals did not show signs of spontaneous neuroinflammation or arthritis. No significant changes were observed in CD4+ T cell numbers, T cell receptor (TCR) distribution, regulatory T cells (Treg), or antigen-induced cytokine production. Abrogating Treg function by treatment with anti-CTLA-4 or anti-CD25 mAb in Aire-deficient HLA-DR tg mice did not trigger EAE or other autoimmune pathology. Our results suggest a redundant role for Aire in maintaining immune tolerance in the context of autoimmune disease-associated human HLA alleles.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Antígeno HLA-DR2/inmunología , Antígeno HLA-DR4/inmunología , Factores de Transcripción/inmunología , Animales , Antígenos/inmunología , Antígenos/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Antígeno HLA-DR2/genética , Antígeno HLA-DR2/metabolismo , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Especificidad de Órganos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína AIRE
6.
BMC Bioinformatics ; 18(1): 313, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28645323

RESUMEN

BACKGROUND: Identifying disease correlated features early before large number of molecules are impacted by disease progression with significant abundance change is very advantageous to biologists for developing early disease diagnosis biomarkers. Disease correlated features have relatively low level of abundance change at early stages. Finding them using existing bioinformatic tools in high throughput data is a challenging task since the technology suffers from limited dynamic range and significant noise. Most existing biomarker discovery algorithms can only detect molecules with high abundance changes, frequently missing early disease diagnostic markers. RESULTS: We present a new statistic called early response index (ERI) to prioritize disease correlated molecules as potential early biomarkers. Instead of classification accuracy, ERI measures the average classification accuracy improvement attainable by a feature when it is united with other counterparts for classification. ERI is more sensitive to abundance changes than other ranking statistics. We have shown that ERI significantly outperforms SAM and Localfdr in detecting early responding molecules in a proteomics study of a mouse model of multiple sclerosis. Importantly, ERI was able to detect many disease relevant proteins before those algorithms detect them at a later time point. CONCLUSIONS: ERI method is more sensitive for significant feature detection during early stage of disease development. It potentially has a higher specificity for biomarker discovery, and can be used to identify critical time frame for disease intervention.


Asunto(s)
Biomarcadores/metabolismo , Esclerosis Múltiple/diagnóstico , Proteómica/métodos , Algoritmos , Animales , Sistema Nervioso Central/metabolismo , Diagnóstico Precoz , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteoma/metabolismo , Factores de Tiempo
7.
Cytokine ; 74(1): 5-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25458968

RESUMEN

CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Citocinas/inmunología , Inflamación/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Esclerosis Múltiple/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
8.
EBioMedicine ; 100: 104963, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183840

RESUMEN

Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Glioblastoma , Adulto , Humanos , Glioblastoma/patología , Antígenos de Neoplasias , Inmunoterapia Adoptiva , Inmunoterapia , Vacunas contra el Cáncer/uso terapéutico , Neoplasias Encefálicas/patología
9.
Front Pediatr ; 12: 1346493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523840

RESUMEN

Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are highly aggressive pediatric central nervous system (CNS) malignancies. pGBM comprises approximately 3% of all pediatric CNS malignancies and has a 5-year survival rate of approximately 20%. Surgical resection and chemoradiation are often the standard of care for pGBM and pHGG, however, even with these interventions, survival for children diagnosed with pGBM and pHGG remains poor. Due to shortcomings associated with the standard of care, many efforts have been made to create novel immunotherapeutic approaches targeted to these malignancies. These efforts include the use of vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it is believed that in many pediatric glioma patients an immunosuppressive tumor microenvironment (TME) possess barriers that limit the efficacy of immune-based therapies. One of these barriers includes the presence of immunosuppressive myeloid cells. In this review we will discuss the various types of myeloid cells present in the glioma TME, including macrophages and microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the specific mechanisms these cells can employ to enable immunosuppression. Finally, we will highlight therapeutic strategies targeted to these cells that are aimed at impeding myeloid-cell derived immunosuppression.

10.
Sci Rep ; 14(1): 5305, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438420

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.


Asunto(s)
Glioblastoma , Glioma , Humanos , Animales , Ratones , Distribución Tisular , Glioma/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Receptores Inmunológicos , Microambiente Tumoral
11.
Artículo en Inglés | MEDLINE | ID: mdl-36973076

RESUMEN

BACKGROUND AND OBJECTIVES: To explore the clinical characteristics and HLA associations of patients with anti-leucine-rich glioma-inactivated 1 encephalitis (LGI1E) from a large single center in Israel. Anti-LGI1E is the most commonly diagnosed antibody-associated encephalitic syndrome in adults. Recent studies of various populations reveal significant associations with specific HLA genes. We examined the clinical characteristics and HLA associations of a cohort of Israeli patients. METHODS: Seventeen consecutive patients with anti-LGI1E diagnosed at Tel Aviv Medical Center between the years 2011 and 2018 were included. HLA typing was performed using next-generation sequencing at the tissue typing laboratory of Sheba Medical Center and compared with data from the Ezer Mizion Bone Marrow Donor Registry, containing over 1,000,000 samples. RESULTS: Our cohort displayed a male predominance and median age at onset in the 7th decade, as previously reported. The most common presenting symptom was seizures. Notably, paroxysmal dizziness spells were significantly more common than previously reported (35%), whereas faciobrachial dystonic seizures were found only in 23%. HLA analysis revealed overrepresentation of DRB1*07:01 (OR: 3.18, CI: 20.9 p < 1.e-5) and DRB1*04:02 (OR: 3.8, CI: 20.1 p < 1.e-5), as well as of the DQ allele DQB1*02:02 (OR: 2.8, CI: 14.2 p < 0.0001) as previously reported. A novel overrepresentation observed among our patients was of the DQB1*03:02 allele (OR: 2.3, CI: 6.9 p < 0.008). In addition, we found DR-DQ associations, among patients with anti-LGI1E, that showed complete or near-complete linkage disequilibrium (LD). By applying LD analysis to an unprecedentedly large control cohort, we were able to show that although in the general population, DQB*03:02 is not fully associated with DRB1*04:02, in the patient population, both alleles are always coupled, suggesting the DRB1*04:02 association to be primary to disease predisposition. In silico predictions performed for the overrepresented DQ alleles reveal them to be strong binders of LGI1-derived peptides, similarly to overrepresented DR alleles. These predictions suggest a possible correlation between peptide binding sites of paired DR-DQ alleles. DISCUSSION: Our cohort presents distinct immune characteristics with substantially higher overrepresentation of DRB1*04:02 and slightly lower overrepresentation of DQB1*07:01 compared with previous reports implying differences between different populations. DQ-DR interactions found in our cohort may shed additional light on the complex role of immunogenetics in the pathogenesis of anti-LGI1E, implying a possible relevance of certain DQ alleles and DR-DQ interactions.


Asunto(s)
Encefalitis , Antígenos HLA-DQ , Adulto , Humanos , Masculino , Femenino , Antígenos HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Frecuencia de los Genes , Cadenas HLA-DRB1/genética , Convulsiones
12.
Cancer Res Commun ; 3(7): 1173-1188, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37426447

RESUMEN

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance: Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.


Asunto(s)
Glioblastoma , Animales , Humanos , Ratones , Glioblastoma/diagnóstico por imagen , Inmunoterapia , Recurrencia Local de Neoplasia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Linfocitos T/metabolismo
13.
Electrophoresis ; 33(24): 3820-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23160929

RESUMEN

We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating immunoenrichment prior to rapid microwave and magnetic (IM(2) ) sample preparation, might enable correlation of the relative expression of CD47 and other low abundance proteins to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, anti-CD47 antibodies were used to enrich for low abundance CD47 prior to microwave and magnetic proteomics in EAE. Decoding protein expression at each time point, with CD47-immunoenriched samples and targeted proteomic analysis, enabled peptides from the low abundance proteins to be precisely quantified throughout disease progression, including: CD47: 86-99, corresponding to the "marker of self" overexpressed by myelin that prevents phagocytosis, or "cellular devouring," by microglia and macrophages; myelin basic protein: 223-228, corresponding to myelin basic protein; and migration inhibitory factor: 79-87, corresponding to a proinflammatory cytokine that inhibits macrophage migration. While validation in a larger cohort is underway, we conclude that IM(2) proteomics is a rapid method to precisely quantify peptides from CD47 and other low abundance proteins throughout disease progression in EAE. This is likely due to improvements in selectivity and sensitivity, necessary to partially overcome masking of low abundance proteins by high abundance proteins and improve dynamic range.


Asunto(s)
Antígeno CD47/análisis , Encefalomielitis Autoinmune Experimental/metabolismo , Inmunoensayo/métodos , Proteoma/análisis , Proteómica/métodos , Secuencia de Aminoácidos , Análisis de Varianza , Animales , Química Encefálica , Antígeno CD47/química , Antígeno CD47/metabolismo , Modelos Animales de Enfermedad , Femenino , Magnetismo , Ratones , Ratones Endogámicos C57BL , Microondas , Datos de Secuencia Molecular , Esclerosis Múltiple/metabolismo
14.
Electrophoresis ; 33(24): 3810-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23161666

RESUMEN

We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M(2) ) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p <0.05) at each time point relative to their expression at the peak of disease, from a total of 1191 proteins observed in four technical replicates, revealed a strong statistical correlation to EAE disease score, particularly for the following four proteins that closely mirror disease progression: 14-3-3ε (p = 3.4E-6); GPI (p = 2.1E-5); PLP1 (p = 8.0E-4); PRX1 (p = 1.7E-4). These results were confirmed by Western blotting, signaling pathway analysis, and hierarchical clustering of EAE risk groups. While validation in a larger cohort is underway, we conclude that M(2) proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatología , Química Encefálica , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Magnetismo , Ratones , Ratones Endogámicos C57BL , Microondas , Esclerosis Múltiple/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos
15.
Cells ; 11(15)2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35954285

RESUMEN

Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.


Asunto(s)
Bacterias , Percepción de Quorum , Animales , Recuento de Células , Humanos , Sistema Inmunológico , Mamíferos , Percepción de Quorum/genética , Transducción de Señal
16.
Neurotrauma Rep ; 3(1): 340-351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204388

RESUMEN

Interleukin-17 (IL-17) is a proinflammatory cytokine primarily secreted in the brain by inflammatory T lymphocytes and glial cells. IL-17+ T-helper (Th17) cells are increased in the ipsilateral hemisphere after experimental traumatic brain injury (TBI), and IL-17 levels are increased in serum and brain tissue. We hypothesized that il17a and related gene expression would be increased in brain tissue after TBI in mice and il17a-/- mice would demonstrate neuroprotection versus wild type. The controlled cortical impact (CCI) model of TBI in adult male C57BL6/J mice was used for all experiments. Data were analyzed by analysis of variance (ANOVA) or repeated-measures two-way ANOVA with the Bonferroni correction. A value of p < 0.05 determined significance. Expression of il17a was significantly reduced in the ipsilateral cortex and hippocampus by day 3 after TBI, and expression remained low at 28 days. There were no differences between il17a-/- and il17a+/+ mice in beam balance, Morris water maze performance, or lesion volume after CCI. Surprisingly, naïve il17a -/- mice performed significantly (p = 0.02) worse than naïve il17a+/+ mice on the probe trial. In conclusion, sustained depression of il17a gene expression was observed in brains after TBI in adult mice. Genetic knockout of IL-17 was not neuroprotective after TBI. IL-17a may be important for memory retention in naïve mice.

17.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35316223

RESUMEN

T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) negatively regulates innate and adaptive immunity in cancer. To identify the mechanisms of Tim-3 in cancer immunity, we evaluated the effects of Tim-3 blockade in human and mouse melanoma. Here, we show that human programmed cell death 1-positive (PD-1+) Tim-3+CD8+ tumor-infiltrating lymphocytes (TILs) upregulate phosphatidylserine (PS), a receptor for Tim-3, and acquire cell surface myeloid markers from antigen-presenting cells (APCs) through transfer of membrane fragments called trogocytosis. Tim-3 blockade acted on Tim-3+ APCs in a PS-dependent fashion to disrupt the trogocytosis of activated tumor antigen-specific CD8+ T cells and PD-1+Tim-3+ CD8+ TILs isolated from patients with melanoma. Tim-3 and PD-1 blockades cooperated to disrupt trogocytosis of CD8+ TILs in 2 melanoma mouse models, decreasing tumor burden and prolonging survival. Deleting Tim-3 in dendritic cells but not in CD8+ T cells impeded the trogocytosis of CD8+ TILs in vivo. Trogocytosed CD8+ T cells presented tumor peptide-major histocompatibility complexes and became the target of fratricide T cell killing, which was reversed by Tim-3 blockade. Our findings have uncovered a mechanism Tim-3 uses to limit antitumor immunity.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Melanoma , Animales , Linfocitos T CD8-positivos , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor , Melanoma/patología , Ratones , Receptor de Muerte Celular Programada 1 , Trogocitosis
18.
EBioMedicine ; 71: 103571, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34530385

RESUMEN

BACKGROUND: Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b+ tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment. METHODS: Utilizing a newly developed bifunctional chelator, Lumi804, an anti-CD11b antibody (αCD11b) was readily labelled with either Zr-89 or Lu-177, yielding functional radiolabelled conjugates for PET, SPECT, and TRT. FINDINGS: 89Zr/177Lu-labeled Lumi804-αCD11b enabled non-invasive imaging of TAMCs in murine gliomas. Additionally, 177Lu-Lumi804-αCD11b treatment reduced TAMC populations in the spleen and tumour and improved the efficacy of checkpoint immunotherapy. INTERPRETATION: 89Zr- and 177Lu-labeled Lumi804-αCD11b may be a promising theranostic pair for monitoring and reducing TAMCs in gliomas to improve immunotherapy responses. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Glioma/diagnóstico , Glioma/terapia , Linfocitos Infiltrantes de Tumor/metabolismo , Terapia Molecular Dirigida , Tomografía de Emisión de Positrones , Radiofármacos , Macrófagos Asociados a Tumores/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Glioma/etiología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunofenotipificación , Lutecio , Linfocitos Infiltrantes de Tumor/patología , Ratones , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio
19.
Front Immunol ; 12: 637146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025646

RESUMEN

Glioblastoma (GBM) remains an aggressive brain tumor with a high rate of mortality. Immune checkpoint (IC) molecules are expressed on tumor infiltrating lymphocytes (TILs) and promote T cell exhaustion upon binding to IC ligands expressed by the tumor cells. Interfering with IC pathways with immunotherapy has promoted reactivation of anti-tumor immunity and led to success in several malignancies. However, IC inhibitors have achieved limited success in GBM patients, suggesting that other checkpoint molecules may be involved with suppressing TIL responses. Numerous IC pathways have been described, with current testing of inhibitors underway in multiple clinical trials. Identification of the most promising checkpoint pathways may be useful to guide the future trials for GBM. Here, we analyzed the The Cancer Genome Atlas (TCGA) transcriptomic database and identified PD1 and TIGIT as top putative targets for GBM immunotherapy. Additionally, dual blockade of PD1 and TIGIT improved survival and augmented CD8+ TIL accumulation and functions in a murine GBM model compared with either single agent alone. Furthermore, we demonstrated that this combination immunotherapy affected granulocytic/polymorphonuclear (PMN) myeloid derived suppressor cells (MDSCs) but not monocytic (Mo) MDSCs in in our murine gliomas. Importantly, we showed that suppressive myeloid cells express PD1, PD-L1, and TIGIT-ligands in human GBM tissue, and demonstrated that antigen specific T cell proliferation that is inhibited by immunosuppressive myeloid cells can be restored by TIGIT/PD1 blockade. Our data provide new insights into mechanisms of GBM αPD1/αTIGIT immunotherapy.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
20.
Cells ; 9(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106536

RESUMEN

CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Diferenciación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA