Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 13(8): 737-43, 2012 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-22706339

RESUMEN

The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.


Asunto(s)
Fusión Celular , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Inmunidad Innata , Interferón Tipo I/biosíntesis , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Animales , Quimiocina CXCL10/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Activación de Linfocitos , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Internalización del Virus
2.
J Immunol ; 190(5): 2311-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23345332

RESUMEN

The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9 and that nonimmune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, such as macrophages and conventional dendritic cells, detect infections with herpesviruses. In this study, we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFN-γ-inducible 16 is important for induction of IFN-ß in human macrophages postinfection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as did IFN-γ-inducible 16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.


Asunto(s)
Cápside/metabolismo , Citomegalovirus/metabolismo , ADN Viral/genética , Herpesvirus Humano 1/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citomegalovirus/genética , Citosol/metabolismo , ADN Viral/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Silenciador del Gen , Herpesvirus Humano 1/genética , Humanos , Interferón beta/biosíntesis , Interferón beta/inmunología , Macrófagos/virología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/inmunología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/inmunología , ARN Interferente Pequeño/genética , Ubiquitinación , Células Vero
3.
J Immunol ; 187(10): 5268-76, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21998456

RESUMEN

Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1 counteracts autophagy via ICP34.5, which dephosphorylates eIF2α and inhibits Beclin 1. Investigation of autophagy during HSV-1 infection has largely been conducted in permissive cells, but recent work suggests the existence of a eIF2α-independent autophagy-inducing pathway in nonpermissive cells. To clarify and further characterize the existence of a novel autophagy-inducing pathway in nonpermissive cells, we examined different HSV and cellular components in murine myeloid cells for their role in autophagy. We demonstrate that HSV-1-induced autophagy does not correlate with phosphorylation of eIF2α, is independent of functional dsRNA-dependent protein kinase, and is not antagonized by ICP34.5. Autophagy was activated independent of viral gene expression, but required viral entry. Importantly, we found that the presence of genomic DNA in the virion was essential for induction of autophagy and, conversely, that transfection of HSV-derived DNA induced microtubule-associated protein 1 L chain II formation, a marker of autophagy. This occurred through a mechanism dependent on stimulator of IFN genes, an essential component for the IFN response to intracellular DNA. Finally, we observed that HSV-1 DNA was present in the cytosol devoid of capsid material following HSV-1 infection of dendritic cells. Thus, our data suggest that HSV-1 genomic DNA induces autophagy in nonpermissive cells in a stimulator of IFN gene-dependent manner.


Asunto(s)
Autofagia/inmunología , Citosol/virología , ADN Viral , Herpesvirus Humano 1/inmunología , Proteínas de la Membrana/fisiología , Células Mieloides/inmunología , Células Mieloides/virología , Animales , Autofagia/genética , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/virología , Línea Celular , Citosol/inmunología , ADN Viral/genética , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Células Mieloides/citología
4.
J Virol ; 81(24): 13315-24, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17913820

RESUMEN

Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-alpha/beta) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-alpha/beta production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.


Asunto(s)
Antivirales/metabolismo , Regulación de la Expresión Génica , Herpes Simple/inmunología , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 2/patogenicidad , Interferón Tipo I/biosíntesis , Receptor Toll-Like 9/metabolismo , Animales , Antivirales/inmunología , Células Cultivadas , Chlorocebus aethiops , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Fibroblastos/citología , Fibroblastos/inmunología , Fibroblastos/virología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Interferón Tipo I/inmunología , Interferón-alfa/biosíntesis , Interferón beta/biosíntesis , Células L , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Conejos , Bazo/citología , Bazo/inmunología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Células Vero , Replicación Viral
5.
APMIS ; 117(5-6): 323-37, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19400860

RESUMEN

The innate immune system constitutes the first line of defense against infections and is also important for initiating the development of an adaptive immune response. The innate immune system recognizes microbial infection through germline-encoded pattern recognition receptors, which are responsible for decoding the microbial fingerprint and activating an appropriate response against the invading pathogen. In this review, we present and discuss current knowledge on how the innate immune system recognizes intracellular pathogens, activates intracellular signaling, induces gene expression, and orchestrates the microbicidal response against pathogens with a habitat within host cells.


Asunto(s)
Células/microbiología , Células/parasitología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata , Animales , Células/virología , ARN Helicasas DEAD-box/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Humanos , Memoria Inmunológica , Infecciones/genética , Infecciones/inmunología , Inflamación/genética , Inflamación/inmunología , Proteínas Adaptadoras de Señalización NOD/fisiología , Proteínas de Unión al ARN , Receptores de Reconocimiento de Patrones/fisiología , Transducción de Señal/fisiología , Receptores Toll-Like/fisiología
6.
J Gen Virol ; 90(Pt 1): 74-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19088275

RESUMEN

The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV infection, and cooperate with the Toll pathway to induce an antiviral response.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Interferón Tipo I/biosíntesis , Simplexvirus/inmunología , Receptor Toll-Like 9/inmunología , Animales , Células Cultivadas , Proteína 58 DEAD Box , Endorribonucleasas/inmunología , Fibroblastos/virología , Ratones
7.
J Virol ; 80(10): 5059-64, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16641297

RESUMEN

Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.


Asunto(s)
Virus ADN/genética , Virus ADN/metabolismo , Virus ARN/genética , Virus ARN/metabolismo , ARN Bicatenario/biosíntesis , Animales , Anticuerpos Monoclonales/metabolismo , Chlorocebus aethiops , Cricetinae , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , ARN Bicatenario/inmunología , Células Vero
8.
J Virol ; 79(20): 12944-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16188996

RESUMEN

Recognition of pathogens by the innate immune system is mediated by pattern recognition receptors (PRRs), which recognize specific molecular structures of the infectious agents and subsequently trigger expression of genes involved in host defense. Toll-like receptors (TLRs) represent a well-characterized class of membrane-bound PRRs, and the RNA helicase retinoic acid inducible gene I (RIG-I) has recently been described as a novel cytoplasmic PRR recognizing double-stranded RNA (dsRNA). Here we show that activation of signal transduction and induction of cytokine expression by the paramyxovirus Sendai virus is dependent on virus replication and involves PRRs in a cell-type-dependent manner. While nonimmune cells relied entirely on recognition of dsRNA through RIG-I for activation of an antiviral response, myeloid cells utilized both the single-stranded RNA sensing TLR7 and TLR8 and dsRNA-dependent mechanisms independent of RIG-I, TLR3, and dsRNA-activated protein kinase R to trigger this response. Therefore, there appears to be a large degree of cell-type specificity in the mechanisms used by the host to recognize infecting viruses.


Asunto(s)
Glicoproteínas de Membrana/farmacología , Glicoproteínas de Membrana/fisiología , ARN Helicasas/fisiología , Receptores de Superficie Celular/fisiología , Infecciones por Respirovirus/inmunología , Virus Sendai/inmunología , Animales , Línea Celular , Citocinas/biosíntesis , Proteína 58 DEAD Box , ARN Helicasas DEAD-box , Humanos , Inmunidad Innata , Glicoproteínas de Membrana/metabolismo , Ratones , ARN Helicasas/metabolismo , Receptores de Superficie Celular/metabolismo , Virus Sendai/fisiología , Transducción de Señal , Especificidad de la Especie , Receptor Toll-Like 3 , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Receptores Toll-Like , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA