Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38469671

RESUMEN

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Fantasmas de Imagen , Humanos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Anisotropía , Algoritmos , Masculino , Adulto , Femenino
2.
Psychol Med ; : 1-11, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497117

RESUMEN

BACKGROUND: Mild traumatic brain injury (mTBI) is common in children. Long-term cognitive and behavioral outcomes as well as underlying structural brain alterations following pediatric mTBI have yet to be determined. In addition, the effect of age-at-injury on long-term outcomes is largely unknown. METHODS: Children with a history of mTBI (n = 406; Mage = 10 years, SDage = 0.63 years) who participated in the Adolescent Brain Cognitive Development (ABCD) study were matched (1:2 ratio) with typically developing children (TDC; n = 812) and orthopedic injury (OI) controls (n = 812). Task-based executive functioning, parent-rated executive functioning and emotion-regulation, and self-reported impulsivity were assessed cross-sectionally. Regression models were used to examine the effect of mTBI on these domains. The effect of age-at-injury was assessed by comparing children with their first mTBI at either 0-3, 4-7, or 8-10 years to the respective matched TDC controls. Fractional anisotropy (FA) and mean diffusivity (MD), both MRI-based measures of white matter microstructure, were compared between children with mTBI and controls. RESULTS: Children with a history of mTBI displayed higher parent-rated executive dysfunction, higher impulsivity, and poorer self-regulation compared to both control groups. At closer investigation, these differences to TDC were only present in one respective age-at-injury group. No alterations were found in task-based executive functioning or white matter microstructure. CONCLUSIONS: Findings suggest that everyday executive function, impulsivity, and emotion-regulation are affected years after pediatric mTBI. Outcomes were specific to the age at which the injury occurred, suggesting that functioning is differently affected by pediatric mTBI during vulnerable periods. Groups did not differ in white matter microstructure.

3.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37095352

RESUMEN

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

4.
Psychophysiology ; 61(4): e14483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37950391

RESUMEN

Regular participation in sports results in a series of physiological adaptations. However, little is known about the brain adaptations to physical activity. Here we aimed to investigate whether young endurance athletes and non-athletes differ in the gray and white matter of the brain and whether cardiorespiratory fitness (CRF) is associated with these differences. We assessed the CRF, volumes of the gray and white matter of the brain using structural magnetic resonance imaging (sMRI), and brain white matter connections using diffusion magnetic resonance imaging (dMRI) in 20 young male endurance athletes and 21 healthy non-athletes. While total brain volume was similar in both groups, the white matter volume was larger and the gray matter volume was smaller in the athletes compared to non-athletes. The reduction of gray matter was located in the association areas of the brain that are specialized in processing of sensory stimuli. In the microstructure analysis, significant group differences were found only in the association tracts, for example, the inferior occipito-frontal fascicle (IOFF) showing higher fractional anisotropy and lower radial diffusivity, indicating stronger myelination in this tract. Additionally, gray and white matter brain volumes, as well as association tracts correlated with CRF. No changes were observed in other brain areas or tracts. In summary, the brain signature of the endurance athlete is characterized by changes in the integration of sensory and motor information in the association areas.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Masculino , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/fisiología , Sustancia Blanca/patología , Sustancia Gris , Atletas
5.
Neuroimage ; 273: 120086, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019346

RESUMEN

White matter fiber clustering is an important strategy for white matter parcellation, which enables quantitative analysis of brain connections in health and disease. In combination with expert neuroanatomical labeling, data-driven white matter fiber clustering is a powerful tool for creating atlases that can model white matter anatomy across individuals. While widely used fiber clustering approaches have shown good performance using classical unsupervised machine learning techniques, recent advances in deep learning reveal a promising direction toward fast and effective fiber clustering. In this work, we propose a novel deep learning framework for white matter fiber clustering, Deep Fiber Clustering (DFC), which solves the unsupervised clustering problem as a self-supervised learning task with a domain-specific pretext task to predict pairwise fiber distances. This process learns a high-dimensional embedding feature representation for each fiber, regardless of the order of fiber points reconstructed during tractography. We design a novel network architecture that represents input fibers as point clouds and allows the incorporation of additional sources of input information from gray matter parcellation. Thus, DFC makes use of combined information about white matter fiber geometry and gray matter anatomy to improve the anatomical coherence of fiber clusters. In addition, DFC conducts outlier removal naturally by rejecting fibers with low cluster assignment probability. We evaluate DFC on three independently acquired cohorts, including data from 220 individuals across genders, ages (young and elderly adults), and different health conditions (healthy control and multiple neuropsychiatric disorders). We compare DFC to several state-of-the-art white matter fiber clustering algorithms. Experimental results demonstrate superior performance of DFC in terms of cluster compactness, generalization ability, anatomical coherence, and computational efficiency.


Asunto(s)
Aprendizaje Profundo , Sustancia Blanca , Adulto , Humanos , Masculino , Femenino , Anciano , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Análisis por Conglomerados , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Hum Brain Mapp ; 44(17): 6055-6073, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792280

RESUMEN

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/cirugía
7.
Dev Neurosci ; 45(4): 161-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36977393

RESUMEN

A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].


Asunto(s)
Imagen de Difusión Tensora , Neurociencias , Animales , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas
8.
Mol Psychiatry ; 27(9): 3719-3730, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982257

RESUMEN

Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).


Asunto(s)
Trastornos del Conocimiento , Esquizofrenia , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Esquizofrenia/patología , Imagen de Difusión Tensora , Trastornos del Conocimiento/complicaciones , Anisotropía , Cognición , Encéfalo/patología
9.
Mol Psychiatry ; 27(4): 2052-2060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35145230

RESUMEN

Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.


Asunto(s)
Esquizofrenia , Encéfalo , Corteza Cerebral , Células Endoteliales , Humanos , Imagen por Resonancia Magnética , Herencia Multifactorial , Esquizofrenia/genética
10.
Neuroimage ; 259: 119439, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788044

RESUMEN

Quantification methods based on the acquisition of diffusion magnetic resonance imaging (dMRI) with multiple diffusion weightings (e.g., multi-shell) are becoming increasingly applied to study the in-vivo brain. Compared to single-shell data for diffusion tensor imaging (DTI), multi-shell data allows to apply more complex models such as diffusion kurtosis imaging (DKI), which attempts to capture both diffusion hindrance and restriction effects, or biophysical models such as NODDI, which attempt to increase specificity by separating biophysical components. Because of the strong dependence of the dMRI signal on the measurement hardware, DKI and NODDI metrics show scanner and site differences, much like other dMRI metrics. These effects limit the implementation of multi-shell approaches in multicenter studies, which are needed to collect large sample sizes for robust analyses. Recently, a post-processing technique based on rotation invariant spherical harmonics (RISH) features was introduced to mitigate cross-scanner differences in DTI metrics. Unlike statistical harmonization methods, which require repeated application to every dMRI metric of choice, RISH harmonization is applied once on the raw data, and can be followed by any analysis. RISH features harmonization has been tested on DTI features but not its generalizability to harmonize multi-shell dMRI. In this work, we investigated whether performing the RISH features harmonization of multi-shell dMRI data removes cross-site differences in DKI and NODDI metrics while retaining longitudinal effects. To this end, 46 subjects underwent a longitudinal (up to 3 time points) two-shell dMRI protocol at 3 imaging sites. DKI and NODDI metrics were derived before and after harmonization and compared both at the whole brain level and at the voxel level. Then, the harmonization effects on cross-sectional and on longitudinal group differences were evaluated. RISH features averaged for each of the 3 sites exhibited prominent between-site differences in the frontal and posterior part of the brain. Statistically significant differences in fractional anisotropy, mean diffusivity and mean kurtosis were observed both at the whole brain and voxel level between all the acquisition sites before harmonization, but not after. The RISH method also proved effective to harmonize NODDI metrics, particularly in white matter. The RISH based harmonization maintained the magnitude and variance of longitudinal changes as compared to the non-harmonized data of all considered metrics. In conclusion, the application of RISH feature based harmonization to multi-shell dMRI data can be used to remove cross-site differences in DKI metrics and NODDI analyses, while retaining inherent relations between longitudinal acquisitions.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Sustancia Blanca/diagnóstico por imagen
11.
Neuroimage ; 246: 118739, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856375

RESUMEN

Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.


Asunto(s)
Asociación , Imagen de Difusión Tensora , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Psicolingüística , Teoría de la Mente/fisiología , Sustancia Blanca/diagnóstico por imagen , Adulto , Conectoma , Femenino , Humanos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven
12.
Hum Brain Mapp ; 43(17): 5310-5325, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35822593

RESUMEN

White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Leucoaraiosis , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cognición , Imagen por Resonancia Magnética
13.
Magn Reson Med ; 87(6): 2697-2709, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35092081

RESUMEN

PURPOSE: To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS: The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS: Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS: The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Aceleración , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
14.
Mol Psychiatry ; 26(7): 3512-3523, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32963336

RESUMEN

The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Estudios Transversales , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Sustancia Blanca/diagnóstico por imagen
15.
Mol Psychiatry ; 26(9): 5357-5370, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33483689

RESUMEN

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Demografía , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
16.
Mol Psychiatry ; 26(11): 6833-6844, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34024906

RESUMEN

Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.


Asunto(s)
Trastornos Psicóticos , Sustancia Blanca , Adolescente , Adulto , Niño , Preescolar , Cuerpo Calloso/patología , Humanos , Estudios Longitudinales , Síntomas Prodrómicos , Trastornos Psicóticos/patología , Sustancia Blanca/patología , Adulto Joven
17.
Cereb Cortex ; 31(1): 201-212, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32851404

RESUMEN

Axonal myelination and repair, critical processes for brain development, maturation, and aging, remain controlled by sexual hormones. Whether this influence is reflected in structural brain differences between sexes, and whether it can be quantified by neuroimaging, remains controversial. Diffusion-weighted magnetic resonance imaging (dMRI) is an in vivo method that can track myelination changes throughout the lifespan. We utilize a large, multisite sample of harmonized dMRI data (n = 551, age = 9-65 years, 46% females/54% males) to investigate the influence of sex on white matter (WM) structure. We model lifespan trajectories of WM using the most common dMRI measure fractional anisotropy (FA). Next, we examine the influence of both age and sex on FA variability. We estimate the overlap between male and female FA and test whether it is possible to label individual brains as male or female. Our results demonstrate regionally and spatially specific effects of sex. Sex differences are limited to limbic structures and young ages. Additionally, not only do sex differences diminish with age, but tracts within each subject become more similar to one another. Last, we show the high overlap in FA between sexes, which implies that determining sex based on WM remains open.


Asunto(s)
Caracteres Sexuales , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Anciano , Envejecimiento , Anisotropía , Axones/fisiología , Niño , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Masculino , Persona de Mediana Edad , Vaina de Mielina/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto Joven
18.
Hum Brain Mapp ; 42(4): 1130-1137, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33170528

RESUMEN

The perception of pain to noxious stimuli, also known as pain sensitivity, varies among individuals. The comprised brain structures and their white matter pathways are complex and elusive. Here, we aimed to investigate whether variation of microstructure of the medial forebrain bundle (MFB), a tract connecting the basal forebrain with the brain stem, is associated with interindividual pain sensitivity. We assessed interindividual pain sensitivity as a rating of pain intensity to heat stimuli (45, 47, and 48.9°C) in 38 healthy men (age: 27.05 ± 5.7 years). We also reconstructed the MFB using multitensor tractography from diffusion magnetic resonance imaging (dMRI) and calculated free-water corrected dMRI measures of fractional anisotropy (FAt ), radial diffusivity (RDt ), and axial diffusivity (ADt ). Lower ratings of interindividual pain intensity correlated with higher FAt and lower RDt of the MFB. As changes in FAt and RDt may reflect abnormalities in myelination, the results might be interpreted as that a lower pain rating is associated with higher degree of myelination of the MFB and could represent an inhibitory pathway of pain. Our results suggest that alteration of microstructure in the MFB contributes to the interindividual variation of pain perception.


Asunto(s)
Imagen de Difusión Tensora/métodos , Haz Prosencefálico Medial/anatomía & histología , Nocicepción/fisiología , Adulto , Variación Biológica Poblacional , Humanos , Masculino , Haz Prosencefálico Medial/diagnóstico por imagen , Adulto Joven
19.
Hum Brain Mapp ; 42(12): 3887-3904, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978265

RESUMEN

The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.


Asunto(s)
Imagen de Difusión Tensora/métodos , Cuerpos Geniculados/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Quiasma Óptico/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen , Tracto Óptico/diagnóstico por imagen , Retina/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Adulto Joven
20.
Hum Brain Mapp ; 42(14): 4658-4670, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34322947

RESUMEN

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.


Asunto(s)
Imagen de Difusión Tensora/normas , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Medicina de Precisión , Valor Predictivo de las Pruebas , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA