Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675270

RESUMEN

Pod borer Helicoverpa armigera, a polyphagus herbivorous pest, tremendously incurs crop damage in economically important crops. This necessitates the identification and utility of novel genes for the control of the herbivore. The present study deals with the characterization of a flavonoid 3'5' hydroxylase_2 (F3'5'H_2) from a pigeonpea wild relative Cajanus platycarpus, possessing a robust chemical resistance response to H. armigera. Though F3'5'H_2 displayed a dynamic expression pattern in both C. platycarpus (Cp) and the cultivated pigeonpea, Cajanus cajan (Cc) during continued herbivory, CpF3'5'H_2 showed a 4.6-fold increase vis a vis 3-fold in CcF3'5'H_2. Despite similar gene copy numbers in the two Cajanus spp., interesting genic and promoter sequence changes highlighted the stress responsiveness of CpF3'5'H_2. The relevance of CpF3'5'H_2 in H. armigera resistance was further validated in CpF3'5'H_2-overexpressed transgenic tobacco based on reduced leaf damage and increased larval mortality through an in vitro bioassay. As exciting maiden clues, CpF3'5'H_2 deterred herbivory in transgenic tobacco by increasing total flavonoids, polyphenols and reactive oxygen species (ROS) scavenging capacity. To the best of our knowledge, this is a maiden attempt ascertaining the role of F3'5'H_2 gene in the management of H. armigera. These interesting leads suggest the potential of this pivotal branch-point gene in biotic stress management programs.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Cajanus/metabolismo , Nicotiana/genética , Polifenoles/farmacología , Polifenoles/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mariposas Nocturnas/genética , Animales Modificados Genéticamente
2.
Appl Microbiol Biotechnol ; 106(18): 5945-5955, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36063177

RESUMEN

Climate change-associated environmental vagaries have amplified the incidence of pests and pathogens on plants, thus imparting the increased quest for management strategies. Plants respond to stresses through intricate signaling networks that regulate diverse cellular mechanisms. Reactive oxygen species (ROS) are cardinal towards the maintenance of normal plant activities as well as improving stress management. Plants that exhibit a fine balance between ROS levels and its management apparently mitigate stresses better. There have been very many compendiums on signaling and management of ROS during several abiotic stresses. However, expansion of knowledge related to ROS induction and homeostasis during biotic stresses is pertinent. Hence, considering its importance, we provide insights in this review on how plants signal and manage ROS upon an oxidative burst during their interaction with pathogens and herbivores. Substantial degree of molecular changes and pivotal roles of ROS have been detected during phyto-pathogen/herbivore interactions, opening novel platforms to understand signaling/management of events under varied biotic stresses. It is interesting to know that, though plants react to biotic stresses through oxidative burst, receptors and elicitors involved in the signal transduction differ across stresses. The review provides explicit details about the specific signaling of ROS production in plants under pathogen and herbivore attack. Furthermore, we also provide an update about tackling the accumulated ROS under biotic stresses as another pivotal step. ROS signaling and homeostasis can be exploited as critical players and a fulcrum to tackle biotic stresses, thus paving the way for futuristic combinatorial stress management strategies. KEY POINTS: • The review is a comprehension of redox signaling and management in plants during herbivory and pathogen infection • Reactive oxygen species (ROS) is an important factor during normal plant activities as well as in their response to stresses. Diverse modes of ROS signaling and management have been observed during both biotic stresses independently • Exploration of plant biology in multi-stress resistant plants like the crop wild relatives could pave the way for combinatorial management of stress for a better tomorrow.


Asunto(s)
Plantas , Estrés Fisiológico , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal
3.
Physiol Mol Biol Plants ; 28(1): 189-202, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35221579

RESUMEN

Insect pests are one of the major biotic stresses limiting yield in commercially important crops. The lepidopteran polyphagous spotted pod borer, Maruca vitrata causes significant economic losses in legumes including pigeonpea. RNA interference (RNAi)-based gene silencing has emerged as one of the potential biotechnological tools for crop improvement. We report in this paper, RNAi in M. vitrata through exogenous administration of dsRNA with sequence specificity to three functionally important genes, Alpha-amylase (α-amylase), Chymotrypsin-like serine protease (CTLP) and Tropomyosin (TPM) into the larval haemolymph and their host-delivered RNAi in pigeonpea. Significant decline in the expression of selected genes supported by over-expression of DICER and generation of siRNA indicated the occurrence of RNAi in the dsRNA-injected larvae. Additionally, the onset of RNAi in the herbivore was demonstrated in pigeonpea, one of the prominent hosts, by host-delivered dsRNA. Transgenics in pigeonpea (cv. Pusa 992), a highly recalcitrant crop, were developed through a shoot apical meristem-targeted in planta transformation strategy and evaluated. Plant level bioassays in transgenic events characterized and selected at molecular level showed mortality of M. vitrata larvae as well as reduced feeding when compared to wild-type. Furthermore, molecular evidence for down regulation of target genes in the insects that fed on transgenic plants authenticated RNAi. Considering the variability of gene silencing in lepidopteran pests, this study provided corroborative proof for the possibility of gene silencing in M. vitrata through both the strategies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-022-01133-3.

4.
Appl Microbiol Biotechnol ; 104(6): 2333-2342, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989226

RESUMEN

Global climate change and combinatorial environmental stresses pose grave challenges to food security and agricultural sustainability. This calls for diverse and futuristic approaches for the development of crops with increased resilience to natural vagaries. Though innumerable strategies involving diverse genes/pathways are being deciphered in plants to aid stress mitigation, the hunt is still on. Furthermore, strategies that work to alleviate a combination of stresses are always pertinent. In this review, we discuss polygalacturonase inhibitor (PGIP) proteins as a plausible option to mitigate multiple biotic stresses. These are ubiquitous cell wall proteins that inhibit the pectin-depolymerizing activity of cell wall loosening enzymes, polygalacturonases (PGs). While plant PGs are those responsible for developmental activities like fruit ripening, pollen tube elongation, etc., PGs from various biotic stress factors like insects, fungal and bacterial pathogens aid in invasion by reducing the plant cell wall rigidity. To counteract, plants secrete PGIPs, which inhibit the pectin hydrolyzing activity of PGs from the attacking pests and pathogens. Multiple approaches in diverse crop species have demonstrated PGIP-based protection against pathogens and insect pests. Additionally, effectual interaction between PGs-PGIP is an important aspect for successful utilization of this approach. Molecular strategies leading to improved PG-PGIPs interaction is a highlight to demonstrate the use of PGIPs as an amenable stress mitigation approach. The review focuses on a comprehensive update on phylogeny of PGIPs, natural variation of resistance as well as their emerging translational utility towards mitigation of various biotic stresses.


Asunto(s)
Biotecnología/métodos , Proteínas de Plantas/fisiología , Poligalacturonasa/antagonistas & inhibidores , Estrés Fisiológico , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo
5.
Appl Microbiol Biotechnol ; 104(17): 7603-7618, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32686005

RESUMEN

The pigeonpea wild relative Cajanus platycarpus is resistant to Helicoverpa armigera, one of the major pests responsible for yield losses in Cajanus cajan. Deciphering the molecular mechanism underlying host plant resistance is pertinent to identify proteins that aid in the mitigation of the insect pest. The present study adopted comparative proteomics as a tool to interpret the resistance mechanism(s) in C. platycarpus vis-à-vis C. cajan during continued herbivory (up to 96 h). Over-representation analysis of the differentially expressed proteins implicated a multi-dimensional resistance response accomplished by both physical and chemical barriers in C. platycarpus. While the chemical basis for resistance was depicted by the upregulation of proteins playing a rate limiting role in the phenylpropanoid pathway, the physical basis was provided by the regulation of proteins involved in microtubule assembly and synthesis of lignins. Upregulation of proteins in the polyamine pathway indicated the role of metabolite conjugates to be negatively affecting herbivore growth. Reallocation of resources and diversion of metabolic flux to support the production of secondary metabolites could be the probable approach in the wild relative against herbivory. Our study provided deeper insights into the pod borer resistance mechanism in C. platycarpus for utility in crop improvement. KEY POINTS: • Pod borer resistance in Cajanus platycarpus is multi-dimensional. • Pod borer resistance has been arbitrated to cell wall rigidity and secondary metabolites. • Phenylpropanoid pathway derivatives apparently shaped the plant chemical defense against pod borer.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Herbivoria , Proteómica
6.
Plant Mol Biol ; 101(1-2): 163-182, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31273589

RESUMEN

KEY MESSAGE: Deeper insights into the resistance response of Cajanus platycarpus were obtained based on comparative transcriptomics under Helicoverpa armigera infestation. Devastation by pod borer, Helicoverpa armigera is one of the major factors for stagnated productivity in Pigeonpea. Despite possessing a multitude of desirable traits including pod borer resistance, wild relatives of Cajanus spp. have remained under-utilized due to linkage drag and cross-incompatibility. Discovery and deployment of genes from them can provide means to tackle key pests like H. armigera. Transcriptomic differences between Cajanus platycarpus and Cajanus cajan during different time points (0, 18, 38, 96 h) of pod borer infestation were elucidated in this study. For the first ever time, we demonstrated captivating variations in their response; C. platycarpus apparently being reasonably agile with effectual transcriptomic reprogramming to deter the insect. Deeper insights into the differential response were obtained by identification of significant GO-terms related to herbivory followed by combined KEGG and ontology analyses. C. platycarpus portrayed a multilevel response with cardinal involvement of SAR, redox homeostasis and reconfiguration of primary metabolites leading to a comprehensive defense response. The credibility of RNA-seq analyses was ascertained by transient expression of selected putative insect resistance genes from C. platycarpus viz., chitinase (CHI4), Alpha-amylase/subtilisin inhibitor (IAAS) and Flavonoid 3_5 hydroxylase (C75A1) in Nicotiana benthamiana followed by efficacy analysis against H. armigera. qPCR validated results of the study provided innovative insights and useful leads for development of durable pod borer resistance.


Asunto(s)
Cajanus/genética , Resistencia a la Enfermedad/genética , Mariposas Nocturnas/fisiología , Enfermedades de las Plantas/inmunología , Transcriptoma , Animales , Cajanus/inmunología , Cajanus/parasitología , Perfilación de la Expresión Génica , Genómica , Herbivoria , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ARN
7.
BMC Biotechnol ; 17(1): 64, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768539

RESUMEN

BACKGROUND: Development of chimeric Cry toxins by protein engineering of known and validated proteins is imperative for enhancing the efficacy and broadening the insecticidal spectrum of these genes. Expression of novel Cry proteins in food crops has however created apprehensions with respect to the safety aspects. To clarify this, premarket evaluation consisting of an array of analyses to evaluate the unintended effects is a prerequisite to provide safety assurance to the consumers. Additionally, series of bioinformatic tools as in silico aids are being used to evaluate the likely allergenic reaction of the proteins based on sequence and epitope similarity with known allergens. RESULTS: In the present study, chimeric Cry toxins developed through protein engineering were evaluated for allergenic potential using various in silico algorithms. Major emphasis was on the validation of allergenic potential on three aspects of paramount significance viz., sequence-based homology between allergenic proteins, validation of conformational epitopes towards identification of food allergens and physico-chemical properties of amino acids. Additionally, in vitro analysis pertaining to heat stability of two of the eight chimeric proteins and pepsin digestibility further demonstrated the non-allergenic potential of these chimeric toxins. CONCLUSIONS: The study revealed for the first time an all-encompassing evaluation that the recombinant Cry proteins did not show any potential similarity with any known allergens with respect to the parameters generally considered for a protein to be designated as an allergen. These novel chimeric proteins hence can be considered safe to be introgressed into plants.


Asunto(s)
Alérgenos/toxicidad , Proteínas Bacterianas/genética , Productos Agrícolas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/toxicidad , Alérgenos/química , Alérgenos/genética , Toxinas de Bacillus thuringiensis , Bases de Datos de Proteínas , Hipersensibilidad a los Alimentos , Pepsina A/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Gene ; 914: 148417, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555003

RESUMEN

This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.


Asunto(s)
Cajanus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Cajanus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Genoma de Planta , Lignina/biosíntesis , Lignina/metabolismo , Lignina/genética , Herbivoria
9.
Int J Biol Macromol ; 254(Pt 1): 127666, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890743

RESUMEN

The spotted pod borer, Maruca vitrata (Lepidoptera: Crambidae) is a destructive insect pest that inflicts significant productivity losses on important leguminous crops. Unravelling insect proteomes is vital to comprehend their fundamental molecular mechanisms. This research delved into the proteome profiles of four distinct stages -three larval and pupa of M. vitrata, utilizing LC-MS/MS label-free quantification-based methods. Employing comprehensive proteome analysis with fractionated datasets, we mapped 75 % of 3459 Drosophila protein orthologues out of which 2695 were identified across all developmental stages while, 137 and 94 were exclusive to larval and pupal stages respectively. Cluster analysis of 2248 protein orthologues derived from MaxQuant quantitative dataset depicted six clusters based on expression pattern similarity across stages. Consequently, gene ontology and protein-protein interaction network analyses using STRING database identified cluster 1 (58 proteins) and cluster 6 (25 proteins) associated with insect immune system and lipid metabolism. Furthermore, qRT-PCR-based expression analyses of ten selected proteins-coding genes authenticated the proteome data. Subsequently, functional validation of these chosen genes through gene silencing reduced their transcript abundance accompanied by a marked increase in mortality among dsRNA-injected larvae. Overall, this is a pioneering study to effectively develop a proteome atlas of M. vitrata as a potential resource for crop protection programs.


Asunto(s)
Mariposas Nocturnas , Proteoma , Animales , Frutas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Mariposas Nocturnas/genética , Larva/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
10.
Mol Biotechnol ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523020

RESUMEN

Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops. Development of transgenic plant using novel strategies to achieve durable resistance against the target insect.

11.
Int J Biol Macromol ; 231: 123325, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681223

RESUMEN

Control of pod borer Helicoverpa armigera, a notorious polyphagous pest requires paramount attention with focus on environment-friendly management approaches. Overproduction of catechins (epigallocatechin-EGC and epicatechin-3-gallate-EC3G) in the pod borer-resistant pigeonpea wild relative, Cajanus platycarpus during continued herbivory prodded us to assess their underlying molecular effect on H. armigera. Significant reduction in larval and pupal growth parameters was observed when reared on artificial diet incorporated with 100 ppm EC3G vis a vis 100 ppm EGC and EGC + EC3G. Comparative RNAseq analyses of larvae that fed on normal and EC3G-incorporated diet revealed 62 differentially expressed genes dominated by detoxification and lipid metabolism. While lipase and fatty acid-binding protein 2-like were up-regulated, delta9-FADS-like involved in fatty acid synthesis was downregulated, indicating effect of EC3G on fat metabolism. Validation of RNAseq data by qPCR; midgut glutathione-S-transferase and esterase assays depicted increased lipolysis and reduced lipogenesis in EC3G-fed larvae. Additionally, differential accumulation of stearic acid and oleic acid in EC3G-fed and control larvae/adults ascertained perturbation in lipogenesis. Supported by modelling, molecular docking and simulations, we demonstrate the possible involvement of the insect adipokinetic hormone receptor (AKHR) in the EC3G-mediated response. The study demonstrates plant specialized metabolite EC3G as a potential candidate for H. armigera control.


Asunto(s)
Catequina , Mariposas Nocturnas , Animales , Catequina/metabolismo , Metabolismo de los Lípidos , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Larva , Plantas/química
12.
Toxins (Basel) ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878193

RESUMEN

Management of pod borer, Helicoverpa armigera in pigeonpea (Cajanus cajan L.), an important legume crop, has been a pertinent endeavor globally. As with other crops, wild relatives of pigeonpea are bestowed with various resistance traits that include the ability to deter the H. armigera. Understanding the molecular basis of pod borer resistance could provide useful leads for the management of this notorious herbivore. Earlier studies by our group in deciphering the resistance response to herbivory through multiomics approaches in the pigeonpea wild relative, Cajanus platycarpus, divulged the involvement of the flavonoid biosynthesis pathway, speculating an active chemical response of the wild relative to herbivory. The present study is a deeper understanding of the chemical basis of pod borer (H. armigera) resistance in, C. platycarpus, with focus on the flavonoid biosynthesis pathway. To substantiate, quantification of transcripts in H. armigera-challenged C. platycarpus (8 h, 24 h, 48 h, 96 h) showed dynamic upregulation (up to 11-fold) of pivotal pathway genes such as chalcone synthase, dihydroflavonol-4-reductase, flavonoid-3'5'-hydroxylase, flavonol synthase, leucoanthocyanidin reductase, and anthocyanidin synthase. Targeted LC-MS analyses demonstrated a concomitant increase (up to 4-fold) in naringenin, kaempferol, quercetin, delphinidin, cyanidin, epigallocatechin, and epicatechin-3-gallate. Interestingly, H. armigera diet overlaid with the over-produced flavonoids (100 ppm) showed deleterious effects on growth leading to a prolonged larval period demonstrating noteworthy coherence between over-accumulation of pathway transcripts/metabolites. The study depicts novel evidence for the directed metabolic reprogramming of the flavonoid biosynthesis pathway in the wild relative to pod borer; plant metabolic potential is worth exploiting for pest management.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Cajanus/química , Cajanus/genética , Flavonoides , Herbivoria , Larva , Mariposas Nocturnas/fisiología
13.
Int J Biol Macromol ; 215: 290-302, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35718158

RESUMEN

Pod borer, Helicoverpa armigera, a polyphagus herbivore causes extensive economic losses to crops, including pigeonpea. Exploitation of pod borer resistance in wild relatives is pertinent due to the absence of resistance sources in cultivated pigeonpea and crossing-incompatibility with the resistant wild relatives. We present leads obtained in deeper understanding of pod borer resistance mechanism in Cajanus platycarpus, a pigeonpea wild relative. Surge in cellular ROS during herbivory leads to redox-PTMs (post translational modifications) of methionine-rich proteins including antioxidant enzymes, causing oxidative damage. Plants then officiate methionine sulfoxide reductases (MSRs), that maintain the redox status of methionine and hence homeostasis. We demonstrate functionality of MSRs (MSRA and MSRB) in the resistance response of the wild relative to pod borer. Among 5 MSRA and 3 MSRB genes, CpMSRA2 and CpMSRB1 were herbivore-responsive based on expression during herbivory. Clues about the stress-responsiveness were obtained upon analyses of cis-elements and co-expressing genes. Apparently, the wild relative followed a non-canonical mode of redox management, as divulged by antioxidant enzymes and the scavenging capacity. Differential lipid peroxidation as an early response provided evidences for an effective redox management in the wild relative. This is the first report signifying redox homeostasis in the resistance response towards herbivory.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Antioxidantes/metabolismo , Cajanus/genética , Homeostasis , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Mariposas Nocturnas/metabolismo , Oxidación-Reducción
14.
Front Microbiol ; 12: 661212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995323

RESUMEN

Cotton is a commercial crop of global importance. The major threat challenging the productivity in cotton has been the lepidopteron insect pest Helicoverpa armigera or cotton bollworm which voraciously feeds on various plant parts. Biotechnological interventions to manage this herbivore have been a universally inevitable option. The advent of plant genetic engineering and exploitation of Bacillus thuringiensis (Bt) insecticidal crystal proteins (ICPs) marked the beginning of plant protection in cotton through transgenic technology. Despite phenomenal success and widespread acceptance, the fear of resistance development in insects has been a perennial concern. To address this issue, alternate strategies like introgression of a combination of cry protein genes and protein-engineered chimeric toxin genes came into practice. The utility of chimeric toxins produced by domain swapping, rearrangement of domains, and other strategies aid in toxins emerging with broad spectrum efficacy that facilitate the avoidance of resistance in insects toward cry toxins. The present study demonstrates the utility of two Bt ICPs, cry1AcF (produced by domain swapping) and cry2Aa (produced by codon modification) in transgenic cotton for the mitigation of H. armigera. Transgenics were developed in cotton cv. Pusa 8-6 by the exploitation of an apical meristem-targeted in planta transformation protocol. Stringent trait efficacy-based selective screening of T1 and T2 generation transgenic plants enabled the identification of plants resistant to H. armigera upon deliberate challenging. Evaluation of shortlisted events in T3 generation identified a total of nine superior transgenic events with both the genes (six with cry1AcF and three with cry2Aa). The transgenic plants depicted 80-100% larval mortality of H. armigera and 10-30% leaf damage. Molecular characterization of the shortlisted transgenics demonstrated stable integration, inheritance and expression of transgenes. The study is the first of its kind to utilise a non-tissue culture-based transformation strategy for the development of stable transgenics in cotton harbouring two novel genes, cry1AcF and cry2Aa for insect resistance. The identified transgenic events can be potential options toward the exploitation of unique cry genes for the management of the polyphagous insect pest H. armigera.

15.
3 Biotech ; 11(4): 197, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33927988

RESUMEN

The polyphagous spotted pod borer, Maruca vitrata is an important agricultural pest that causes extensive damage on various food crops. Though the pest is managed by synthetic chemicals, exploration of biotechnological approaches for its control is important. RNAi-based gene silencing is one such tool that has been extensively used for functional genomics and is highly variable in insects. In view of this, we have attempted to demonstrate RNAi in M. vitrata through exogenous double-stranded RNA (dsRNA) administration targeting seven genes associated with midgut, chemosensory, cell signalling and development. Two modes of exogenous dsRNA delivery by either haemolymph injection and/or ingestion into third and late third instar larval stages respectively exhibited efficient silencing of specific transcripts. Furthermore, dsRNA injection into the haemolymph showed significant reduction of target gene expression compared to negative controls establishing this mode of delivery to be more efficient. Interestingly, haemolymph injection required lesser dsRNA and led to higher reduction of transcript level vis-à-vis ingestion as demonstrated in dsRNA Serine Protease 33 (ds-SP33)-fed larvae. Over-expression of key RNAi component DICER and detection of siRNA authenticated the presence of RNAi in M. vitrata. Additionally, we have identified inhibitor molecules like morpholine, piperidine, carboxamide and piperidine-carboxamide through in silico analysis for blocking the function of SP33 to demonstrate the utility of functional genomics. Thus, the present study establishes the usefulness of injection and ingestion approaches for exogenous dsRNA delivery into M. vitrata larvae for effective RNAi. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02741-8.

16.
Pest Manag Sci ; 77(5): 2337-2349, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421295

RESUMEN

BACKGROUND: Pigeonpea, Cajanus cajan is one of the economically important legume food crops and a major source of dietary proteins. Management of pod borer, Helicoverpa armigera has been prominent among crop improvement programs. Lack of resistance sources in the cultivated germplasm and crossing incompatibility with pod borer-resistant wild relatives have prompted biotechnological interventions. Identification and exploitation of genes from pigeonpea wild relatives in host plant resistance towards the pod borer assumes pertinence. Dynamic transcriptome analysis of the wild relative vis a vis cultivated pigeonpea identified a CHI4 chitinase as one of the putative insect resistance genes. RESULTS: The study presents variations in important amino acids in CHI4 chitinases from C. cajan and its wild relative C. platycarpus. Comparative protein modeling and docking analysis of the two proteins demonstrated differences in substrate binding efficacy of the chitinase from C. platycarpus which resulted in a minimum binding energy of -8.7 kcal mol-1 . Furthermore, we successfully evaluated the insecticidal activity of the chitinase from C. platycarpus against H. armigera challenge through heterologous expression in tobacco. Molecular characterization of transgenic plants confirmed that their efficacy against H. armigera was a result of the integration of CHI4 from C. platycarpus. CONCLUSION: Docking analysis demonstrated effective substrate interaction as a possible reason for efficacy against pod borer in the chitinase from C. platycarpus. This was authenticated by successful overexpression and bioefficacy assessment against H. armigera in tobacco. The CHI4 gene from C. platycarpus can be useful in the mitigation of H. armegira in pigeonpea as well as in other crops. © 2021 Society of Chemical Industry.


Asunto(s)
Cajanus , Quitinasas , Mariposas Nocturnas , Animales , Cajanus/genética , Quitinasas/genética , Perfilación de la Expresión Génica , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/genética
17.
ACS Omega ; 5(33): 20674-20683, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32875201

RESUMEN

Plants are challenged incessantly by several biotic and abiotic stresses during their entire growth period. As with other biotic stress factors, insect pests have also posed serious concerns related to yield losses due to which agricultural productivity is at stake. In plants, trait modification for crop improvement was initiated with breeding approaches followed by genetic engineering. However, stringent regulatory policies for risk assessment and lack of social acceptance for genetically modified crops worldwide have incited researchers toward alternate strategies. Genome engineering or genome editing has emerged as a new breeding technique with the ability to edit the genomes of plants, animals, microbes, and human beings. Several gene editing strategies are being executed with continuous emergence of variants. The scientific community has unraveled the utility of various editing tools from endonucleases to CRISPR/Cas in several aspects related to plant growth, development, and mitigation of stresses. The categorical focus on the development of tools and techniques including designing of binary vectors to facilitate ease in genome engineering are being pursued. Through this Review, we embark upon the conglomeration of various genome editing strategies that can be and are being used to design insect pest resistance in plants. Case studies and novel crop-based approaches that reiterate the successful use of these tools in insects as well as in plants are highlighted. Further, the Review also provides implications for the requirement of a specific regulatory framework and risk assessment of the edited crops. Genome editing toward insect pest management is here to stay, provided uncompromising efforts are made toward the identification of amiable target genes.

18.
Pest Manag Sci ; 76(5): 1902-1911, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31840900

RESUMEN

BACKGROUND: Pigeonpea is a source of quality proteins and the main constituent of a well-balanced diet for majority of Indian population. One of the major constraints in the production of pigeonpea is a polyphagous insect pest, Helicoverpa armigera. Non-availability of resistant sources in the germplasm and limitations in conventional breeding have been key factors for continued yield losses. Additionally, hazards of chemical fertilizers on the environment have prompted the scientific community to develop alternative strategies. Bacillus thuringiensis (Bt) insecticidal proteins (ICPs) have emerged as the most reliable source for the control of insect pests through transgenics. RESULTS: Transgenic pigeonpea plants harboring validated Bt ICPs, Cry2Aa and Cry1AcF were developed by a non-tissue culture based in planta transformation strategy and assessed for integration of Transfer-DNA (T-DNA) and efficacy against pod borer under in vitro conditions. For the first time this study demonstrates the successful evaluation of 19 transgenic pigeonpea events (11 with cry2Aa and 8 with cry1AcF) under soil and pot conditions in a nethouse containment. The stability in the performance was assessed stringently by deliberate H. armigera larval challenging. The trial identified ten promising events of both the genes that portrayed reduced damage to the herbivore. CONCLUSION: We present the first ever successful evaluation of pigeonpea transgenics with the ability to mitigate pod borer under nethouse conditions. The transgenics depicted molecular evidence for the stability of T-DNA integration, consistency in the expression of Cry proteins and resistance against H. armigera. These events can form a pool of useful transgenics to manage the devastating pod borer. © 2019 Society of Chemical Industry.


Asunto(s)
Bacillus thuringiensis , Cajanus , Mariposas Nocturnas , Animales , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Herbivoria , Insecticidas , Control Biológico de Vectores
19.
Front Plant Sci ; 11: 768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733492

RESUMEN

Weeds burden plant growth as they compete for space, sunlight, and soil nutrients leading to 25-80% yield losses. Glyphosate [N-(phosphonomethyl)glycine] is a widely used broad spectrum non-selective herbicide that controls weeds by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and interfering with the shikimate biosynthesis pathway. Cotton (Gossypium hirsutum L.) is one of the most important commercial crops grown worldwide for its fiber. We have developed herbicide tolerant transgenic cotton (cv. P8-6) by introgression of a codon-optimized and modified EPSPS gene (CP4-EPSPS) possessing an N-terminal chloroplast targeting peptide from Petunia hybrida. Because of the recalcitrant nature of cotton, a genotype-independent non-tissue culture-based apical meristem-targeted in planta transformation approach was used to develop transformants. Although in planta transformation methodologies are advantageous in developing a large number of transgenic plants, effective screening strategies are essential for initial identification of transformants. In the present study, the use of a two-level rigorous screening strategy identified 2.27% of T1 generation plants as tolerant to 800 and 1,500 mg/L of commercially available glyphosate (Roundup). Precise molecular characterization revealed stable integration, expression, and inheritance of CP4-EPSPS in advanced generations of the promising transgenic events. Further, superiority of selected transgenic plants in tolerating increasing levels of glyphosate (500-4,000 mg/L) was ascertained through reduced accumulation of shikimate. This report is the first of its kind where cotton transformants tolerating high levels of glyphosate (up to 4,000 mg/L) and accumulating low levels of shikimate have been identified. This study not only reiterated the genotype-independent nature of the transformation strategy but also reiterated the translational utility of the CP4-EPSPS gene in management of weeds.

20.
Toxins (Basel) ; 11(3)2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832332

RESUMEN

Bacillus thuringiensis insecticidal proteins (Bt ICPs) are reliable and valuable options for pest management in crops. Protein engineering of Bt ICPs is a competitive alternative for resistance management in insects. The primary focus of the study was to reiterate the translational utility of a protein-engineered chimeric Cry toxin, Cry1AcF, for its broad spectrum insecticidal efficacy using molecular modeling and docking studies. In-depth bioinformatic analysis was undertaken for structure prediction of the Cry toxin as the ligand and aminopeptidase1 receptors (APN1) from Helicoverpa armigera (HaAPN1) and Spodoptera litura (SlAPN1) as receptors, followed by interaction studies using protein-protein docking tools. The study revealed feasible interactions between the toxin and the two receptors through H-bonding and hydrophobic interactions. Further, molecular dynamics simulations substantiated the stability of the interactions, proving the broad spectrum efficacy of Cry1AcF in controlling H. armigera and S. litura. These findings justify the utility of protein-engineered toxins in pest management.


Asunto(s)
Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insectos/química , Insecticidas/química , Modelos Moleculares , Mariposas Nocturnas , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA