Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 173(4): 817-819, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727669

RESUMEN

IRF8 is a master transcription factor for immune cell development. In this issue, Karki et al. reveal that IRF8 governs the constitutive expression of genes encoding for NAIP proteins that are critical for the innate immune sensing of bacteria.


Asunto(s)
Inflamasomas , Proteína Inhibidora de la Apoptosis Neuronal/genética , Diferenciación Celular , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética
2.
Nat Immunol ; 20(5): 527-533, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962589

RESUMEN

Monitoring of the cytosolic compartment by the innate immune system for pathogen-encoded products or pathogen activities often enables the activation of a subset of caspases. In most cases, the cytosolic surveillance pathways are coupled to activation of caspase-1 via canonical inflammasome complexes. A related set of caspases, caspase-11 in rodents and caspase-4 and caspase-5 in humans, monitors the cytosol for bacterial lipopolysaccharide (LPS). Direct activation of caspase-11, caspase-4 and caspase-5 by intracellular LPS elicits the lytic cell death called 'pyroptosis', which occurs in multiple cell types. The pyroptosis is executed by the pore-forming protein GSDMD, which is activated by cleavage mediated by caspase-11, caspase-4 or caspase-5. In monocytes, formation of GSDMD pores can induce activation of the NLRP3 inflammasome for maturation of the cytokines IL-1ß and IL-18. Caspase-11-mediated pyroptosis in response to cytosolic LPS is critical for antibacterial defense and septic shock. Here we review the emerging literature on the sensing of cytosolic LPS and its regulation and pathophysiological functions.


Asunto(s)
Caspasas/inmunología , Citosol/inmunología , Inmunidad Innata/inmunología , Lipopolisacáridos/inmunología , Animales , Caspasas/metabolismo , Citosol/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/metabolismo , Modelos Inmunológicos , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Piroptosis/inmunología
3.
Cell ; 165(4): 792-800, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153493

RESUMEN

Canonical activation of the inflammasome is critical to promote caspase-1-dependent maturation of the proinflammatory cytokines IL-1ß and IL-18, as well as to induce pyroptotic cell death in response to pathogens and endogenous danger signals. Recent discoveries, however, are beginning to unveil new components of the inflammasome machinery as well as the full spectrum of inflammasome functions, extending their influence beyond canonical functions to regulation of eicosanoid storm, autophagy, and metabolism. In addition, the receptor components of the inflammasome can also regulate diverse biological processes, such as cellular proliferation, gene transcription, and tumorigenesis, all of which are independent of their inflammasome complex-forming capabilities. Here, we review these recent advances that are shaping our understanding of the complex biology of the inflammasome and its constituents.


Asunto(s)
Inflamasomas/fisiología , Transducción de Señal , Animales , Muerte Celular , Humanos , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/metabolismo
4.
Cell ; 165(5): 1106-1119, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27156449

RESUMEN

Sensing of lipopolysaccharide (LPS) in the cytosol triggers caspase-11 activation and is central to host defense against Gram-negative bacterial infections and to the pathogenesis of sepsis. Most Gram-negative bacteria that activate caspase-11, however, are not cytosolic, and the mechanism by which LPS from these bacteria gains access to caspase-11 in the cytosol remains elusive. Here, we identify outer membrane vesicles (OMVs) produced by Gram-negative bacteria as a vehicle that delivers LPS into the cytosol triggering caspase-11-dependent effector responses in vitro and in vivo. OMVs are internalized via endocytosis, and LPS is released into the cytosol from early endosomes. The use of hypovesiculating bacterial mutants, compromised in their ability to generate OMVs, reveals the importance of OMVs in mediating the cytosolic localization of LPS. Collectively, these findings demonstrate a critical role for OMVs in enabling the cytosolic entry of LPS and, consequently, caspase-11 activation during Gram-negative bacterial infections.


Asunto(s)
Bacterias Gramnegativas/citología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Lipopolisacáridos/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citosol/metabolismo , Activación Enzimática , Bacterias Gramnegativas/química , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Interleucina-1/inmunología , Ratones
5.
Immunity ; 50(1): 51-63.e5, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30635239

RESUMEN

Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Infecciones por Virus ADN/inmunología , Virus ADN/fisiología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , 2',5'-Oligoadenilato Sintetasa/genética , Animales , AMP Cíclico/metabolismo , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Células THP-1 , Replicación Viral
6.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170814

RESUMEN

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Francisella/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Interferón Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato , Potasio/metabolismo , ARN Interferente Pequeño/genética
7.
Cell ; 150(3): 606-19, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22819539

RESUMEN

Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caspasas/metabolismo , Citrobacter rodentium/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Inflamasomas/metabolismo , Interferones/metabolismo , Animales , Proteínas Portadoras/metabolismo , Caspasas Iniciadoras , Citrobacter rodentium/inmunología , Escherichia coli Enterohemorrágica/inmunología , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal
8.
Nat Immunol ; 14(1): 52-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23160153

RESUMEN

Interleukin 1 (IL-1) is an important mediator of innate immunity but can also promote inflammatory tissue damage. During chronic infections such as tuberculosis, the beneficial antimicrobial role of IL-1 must be balanced with the need to prevent immunopathology. By exogenously controlling the replication of Mycobacterium tuberculosis in vivo, we obviated the requirement for antimicrobial immunity and discovered that both IL-1 production and infection-induced immunopathology were suppressed by lymphocyte-derived interferon-γ (IFN-γ). This effect was mediated by nitric oxide (NO), which we found specifically inhibited assembly of the NLRP3 inflammasome via thiol nitrosylation. Our data indicate that the NO produced as a result of adaptive immunity is indispensable in modulating the destructive innate inflammatory responses elicited during persistent infections.


Asunto(s)
Proteínas Portadoras/metabolismo , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/inmunología , Óxido Nítrico/metabolismo , Tuberculosis/inmunología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Óxido Nítrico/inmunología , Modificación Traduccional de las Proteínas/genética , Modificación Traduccional de las Proteínas/inmunología , Multimerización de Proteína/genética , Multimerización de Proteína/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
9.
Nat Immunol ; 14(6): 543-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644505

RESUMEN

Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Inflamasomas/inmunología , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Fagosomas/inmunología , Animales , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática/inmunología , Citometría de Flujo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Concentración de Iones de Hidrógeno , Immunoblotting , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología
10.
Nat Immunol ; 13(4): 333-42, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22430786

RESUMEN

Innate immune responses have the ability to both combat infectious microbes and drive pathological inflammation. Inflammasome complexes are a central component of these processes through their regulation of interleukin 1ß (IL-1ß), IL-18 and pyroptosis. Inflammasomes recognize microbial products or endogenous molecules released from damaged or dying cells both through direct binding of ligands and indirect mechanisms. The potential of the IL-1 family of cytokines to cause tissue damage and chronic inflammation emphasizes the importance of regulating inflammasomes. Many regulatory mechanisms have been identified that act as checkpoints for attenuating inflammasome signaling at multiple steps. Here we discuss the various regulatory mechanisms that have evolved to keep inflammasome signaling in check to maintain immunological balance.


Asunto(s)
Inmunidad Innata/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Humanos , Inflamasomas/metabolismo
11.
Nat Immunol ; 12(3): 222-30, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21151103

RESUMEN

Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. Here we demonstrate that depletion of the autophagic proteins LC3B and beclin 1 enhanced the activation of caspase-1 and secretion of interleukin 1ß (IL-1ß) and IL-18. Depletion of autophagic proteins promoted the accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial reactive oxygen species (ROS). Cytosolic mtDNA contributed to the secretion of IL-1ß and IL-18 in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.


Asunto(s)
Autofagia , Proteínas Portadoras/inmunología , ADN Mitocondrial , Inmunidad Innata , Inflamasomas/inmunología , Animales , Caspasa 1/inmunología , Citometría de Flujo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR
13.
Nat Immunol ; 11(5): 395-402, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20351692

RESUMEN

Inflammasomes regulate the activity of caspase-1 and the maturation of interleukin 1beta (IL-1beta) and IL-18. AIM2 has been shown to bind DNA and engage the caspase-1-activating adaptor protein ASC to form a caspase-1-activating inflammasome. Using Aim2-deficient mice, we identify a central role for AIM2 in regulating caspase-1-dependent maturation of IL-1beta and IL-18, as well as pyroptosis, in response to synthetic double-stranded DNA. AIM2 was essential for inflammasome activation in response to Francisella tularensis, vaccinia virus and mouse cytomegalovirus and had a partial role in the sensing of Listeria monocytogenes. Moreover, production of IL-18 and natural killer cell-dependent production of interferon-gamma, events critical in the early control of virus replication, were dependent on AIM2 during mouse cytomegalovirus infection in vivo. Collectively, our observations demonstrate the importance of AIM2 in the sensing of both bacterial and viral pathogens and in triggering innate immunity.


Asunto(s)
Infecciones por Virus ADN/inmunología , Virus ADN/inmunología , Francisella tularensis/inmunología , Células Asesinas Naturales/metabolismo , Listeriosis/inmunología , Macrófagos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Tularemia/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/genética , Caspasa 1/inmunología , Caspasa 1/metabolismo , Línea Celular , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Proteínas del Citoesqueleto/genética , ADN/inmunología , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/metabolismo , Virus ADN/crecimiento & desarrollo , Virus ADN/patogenicidad , Proteínas de Unión al ADN , Francisella tularensis/patogenicidad , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/microbiología , Células Asesinas Naturales/patología , Células Asesinas Naturales/virología , Listeriosis/genética , Listeriosis/metabolismo , Activación de Linfocitos/genética , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Tularemia/genética , Tularemia/metabolismo , Carga Viral/genética , Carga Viral/inmunología
14.
Immunity ; 37(1): 96-107, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22840842

RESUMEN

Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1ß, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1ß production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.


Asunto(s)
Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Peste/inmunología , Peste/metabolismo , Yersinia pestis/inmunología , Animales , Inflamasomas/inmunología , Interferón gamma/biosíntesis , Interleucina-18/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peste/mortalidad , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 111(21): 7765-70, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24828532

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is an extracellular pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The proinflammatory cytokine, interleukin-1ß, has been linked to hemolytic uremic syndrome. Here we identify the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome as an essential mediator of EHEC-induced IL-1ß. Whereas EHEC-specific virulence factors were dispensable for NLRP3 activation, bacterial nucleic acids such as RNA:DNA hybrids and RNA gained cytosolic access and mediated inflammasome-dependent responses. Consistent with a direct role for RNA:DNA hybrids in inflammasome activation, delivery of synthetic EHEC RNA:DNA hybrids into the cytosol triggered NLRP3-dependent responses, and introduction of RNase H, which degrades such hybrids, into infected cells specifically inhibited inflammasome activation. Notably, an E. coli rnhA mutant, which is incapable of producing RNase H and thus harbors increased levels of RNA:DNA hybrid, induced elevated levels of NLRP3-dependent caspase-1 activation and IL-1ß maturation. Collectively, these findings identify RNA:DNA hybrids of bacterial origin as a unique microbial trigger of the NLRP3 inflammasome.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli Enterohemorrágica/inmunología , Síndrome Hemolítico-Urémico/inmunología , Inflamasomas/inmunología , Interleucina-1beta/inmunología , ARN/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/inmunología , Caspasa 1/inmunología , ADN de Cadena Simple/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas de Escherichia coli/genética , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Datos de Secuencia Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , ARN/genética , Proteínas Ribosómicas/genética
17.
J Immunol ; 193(5): 2519-2530, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25063877

RESUMEN

Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1ß maturation and resistance to fungal dissemination in Candida albicans infection. ß-Glucans are major components of fungal cell walls that trigger IL-1ß secretion in both murine and human immune cells. In this study, we sought to determine the contribution of ß-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1ß production in response to ß-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating ß-glucan-induced IL-1ß processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting ß-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1ß maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1ß production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating ß-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between ß-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Caspasa 8/inmunología , Polisacáridos Fúngicos/inmunología , Interleucina-1beta/inmunología , Lectinas Tipo C/inmunología , Antígeno de Macrófago-1/inmunología , beta-Glucanos/inmunología , Animales , Candida albicans/genética , Candidiasis/genética , Candidiasis/patología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Caspasa 8/genética , Muerte Celular/genética , Muerte Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Polisacáridos Fúngicos/genética , Humanos , Interleucina-1beta/genética , Lectinas Tipo C/genética , Antígeno de Macrófago-1/genética , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR
18.
J Immunol ; 193(4): 1911-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015823

RESUMEN

TLR4 interactor with leucine-rich repeats (TRIL) is a brain-enriched accessory protein that is important in TLR3 and TLR4 signaling. In this study, we generated Tril(-/-) mice and examined TLR responses in vitro and in vivo. We found a role for TRIL in both TLR4 and TLR3 signaling in mixed glial cells, consistent with the high level of expression of TRIL in these cells. We also found that TRIL is a modulator of the innate immune response to LPS challenge and Escherichia coli infection in vivo. Tril(-/-) mice produce lower levels of multiple proinflammatory cytokines and chemokines specifically within the brain after E. coli and LPS challenge. Collectively, these data uncover TRIL as a mediator of innate immune responses within the brain, where it enhances neuronal cytokine responses to infection.


Asunto(s)
Encéfalo/inmunología , Proteínas Portadoras/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/inmunología , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 4/inmunología , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Células Cultivadas , Quimiocina CCL5/biosíntesis , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Péptidos y Proteínas de Señalización Intercelular , Interleucina-6/biosíntesis , Lipopolisacáridos , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/inmunología , Poli I-C/farmacología , Transducción de Señal/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis
19.
J Immunol ; 191(7): 3514-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23997220

RESUMEN

Mycobacterium tuberculosis extracellular DNA gains access to the host cell cytosol via the ESX-1 secretion system. It is puzzling that this extracellular DNA of M. tuberculosis does not induce activation of the AIM2 inflammasome because AIM2 recognizes cytosolic DNA. In this study, we show that nonvirulent mycobacteria such as Mycobacterium smegmatis induce AIM2 inflammasome activation, which is dependent on their strong induction of IFN-ß production. In contrast, M. tuberculosis, but not an ESX-1-deficient mutant, inhibits the AIM2 inflammasome activation induced by either M. smegmatis or transfected dsDNA. The inhibition does not involve changes in host cell AIM2 mRNA or protein levels but led to decreased activation of caspase-1. We furthermore demonstrate that M. tuberculosis inhibits IFN-ß production and signaling, which was partially responsible for the inhibition of AIM2 activation. In conclusion, we report a novel immune evasion mechanism of M. tuberculosis that involves the ESX-1-dependent, direct or indirect, suppression of the host cell AIM2 inflammasome activation during infection.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Inflamasomas/metabolismo , Interferón beta/metabolismo , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Proteínas de Unión al ADN , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/genética
20.
J Immunol ; 190(10): 5216-25, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23585680

RESUMEN

Vascular disrupting agents such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA) represent a novel approach for cancer treatment. DMXAA has potent antitumor activity in mice and, despite significant preclinical promise, failed human clinical trials. The antitumor activity of DMXAA has been linked to its ability to induce type I IFNs in macrophages, although the molecular mechanisms involved are poorly understood. In this study, we identify stimulator of IFN gene (STING) as a direct receptor for DMXAA leading to TANK-binding kinase 1 and IFN regulatory factor 3 signaling. Remarkably, the ability to sense DMXAA was restricted to murine STING. Human STING failed to bind to or signal in response to DMXAA. Human STING also failed to signal in response to cyclic dinucleotides, conserved bacterial second messengers known to bind and activate murine STING signaling. Collectively, these findings detail an unexpected species-specific role for STING as a receptor for an anticancer drug and uncover important insights that may explain the failure of DMXAA in clinical trials for human cancer.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Xantonas/metabolismo , Xantonas/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/efectos de los fármacos , Interferón beta/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Ratones , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA