Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Carcinog ; 59(6): 618-628, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32189406

RESUMEN

Targeting DNA repair with small-molecule inhibitors is an attractive strategy for cancer therapy. Majority of DNA double-strand breaks in mammalian cells are repaired through nonhomologous end-joining (NHEJ). It has been shown that small-molecule inhibitors of NHEJ can block efficient repair inside cancer cells, leading to cell death. Previously, we have reported that SCR7, an inhibitor of NHEJ can induce tumor regression in mice. Later studies have shown that different forms of SCR7 can inhibit DNA end-joining in Ligase IV-dependent manner. Recently, we have derivatized SCR7 by introducing spiro ring into core structure. Here, we report the identification of a novel inhibitor of NHEJ, named SCR130 with 20-fold higher efficacy in inducing cytotoxicity in cancer cell lines. SCR130 inhibited DNA end-joining catalyzed by rat tissue extract. Specificity analysis revealed that while SCR130 was specific to Ligase IV, it showed minimal or no effect on Ligase III and Ligase I mediated joining. Importantly, SCR130 exhibited the least cytotoxicity in Ligase IV-null cell line as compared with wild type, confirming Ligase IV-specificity. Furthermore, we demonstrate that SCR130 can potentiate the effect of radiation in cancer cells when used in combination with γ-radiation. Various cellular assays in conjunction with Western blot analysis revealed that treatment with SCR130 led to loss of mitochondrial membrane potential leading to cell death by activating both intrinsic and extrinsic pathways of apoptosis. Thus, we describe a novel inhibitor of NHEJ with higher efficacy and may have the potential to be developed as cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Muerte Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasa (ATP)/antagonistas & inhibidores , Pirimidinas/farmacología , Bases de Schiff/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Células HeLa , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Ratas
2.
EMBO Rep ; 17(11): 1609-1623, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27596623

RESUMEN

The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of CtIP to chromatin and subsequent end resection during DNA DSB repair. Our data support a role for CHD1 in opening the chromatin around the DSB to facilitate the recruitment of homologous recombination (HR) proteins. Consequently, depletion of CHD1 specifically affects HR-mediated DNA repair but not non-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Biomarcadores , Proteínas Portadoras/genética , Línea Celular Tumoral , Cromatina , Roturas del ADN de Doble Cadena , ADN Helicasas/deficiencia , ADN Helicasas/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas , Humanos , Masculino , Proteínas Nucleares/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/genética , Reparación del ADN por Recombinación
4.
Clin Epigenetics ; 11(1): 4, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616689

RESUMEN

BACKGROUND: Disruptor of telomeric silencing 1-like (DOT1L) is a non-SET domain containing methyltransferase known to catalyze mono-, di-, and tri-methylation of histone 3 on lysine 79 (H3K79me). DOT1L-mediated H3K79me has been implicated in chromatin-associated functions including gene transcription, heterochromatin formation, and DNA repair. Recent studies have uncovered a role for DOT1L in the initiation and progression of leukemia and other solid tumors. The development and availability of small molecule inhibitors of DOT1L may provide new and unique therapeutic options for certain types or subgroups of cancer. METHODS: In this study, we examined the role of DOT1L in DNA double-strand break (DSB) response and repair by depleting DOT1L using siRNA or inhibiting its methyltransferase activity using small molecule inhibitors in colorectal cancer cells. Cells were treated with different agents to induce DNA damage in DOT1L-depleted or -inhibited cells and analyzed for DNA repair efficiency and survival. Further, rectal cancer patient samples were analyzed for H3K79me3 levels in order to determine whether it may serve as a potential marker for personalized therapy. RESULTS: Our results indicate that DOT1L is required for a proper DNA damage response following DNA double-strand breaks by regulating the phosphorylation of the variant histone H2AX (γH2AX) and repair via homologous recombination (HR). Importantly, we show that small molecule inhibitors of DOT1L combined with chemotherapeutic agents that are used to treat colorectal cancers show additive effects. Furthermore, examination of H3K79me3 levels in rectal cancer patients demonstrates that lower levels correlate with a poorer prognosis. CONCLUSIONS: In this study, we conclude that DOT1L plays an important role in an early DNA damage response and repair of DNA double-strand breaks via the HR pathway. Moreover, DOT1L inhibition leads to increased sensitivity to chemotherapeutic agents and PARP inhibition, which further highlights its potential clinical utility. Our results further suggest that H3K79me3 can be useful as a predictive and or prognostic marker for rectal cancer patients.


Asunto(s)
Resistencia a Antineoplásicos , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias del Recto/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Epigénesis Genética , Células HCT116 , N-Metiltransferasa de Histona-Lisina , Humanos , Metilación , Metiltransferasas/antagonistas & inhibidores , Fosforilación , Pronóstico , ARN Interferente Pequeño/farmacología , Reparación del ADN por Recombinación , Bibliotecas de Moléculas Pequeñas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA