RESUMEN
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Asunto(s)
Adaptación Fisiológica/genética , Quirópteros/genética , Evolución Molecular , Genoma/genética , Genómica/normas , Adaptación Fisiológica/inmunología , Animales , Quirópteros/clasificación , Quirópteros/inmunología , Elementos Transponibles de ADN/genética , Inmunidad/genética , Anotación de Secuencia Molecular/normas , Filogenia , ARN no Traducido/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Integración Viral/genética , Virus/genéticaRESUMEN
Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired ß-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-daydependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling.
Asunto(s)
Artritis , Relojes Circadianos , Ritmo Circadiano/fisiología , Metabolismo Energético , Humanos , Inflamación/metabolismoRESUMEN
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
Asunto(s)
Quirópteros , Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Quirópteros/genética , Transferencia de Gen Horizontal , Evolución Molecular , Mamíferos/genética , FilogeniaRESUMEN
Transposable elements (TEs) are genomic parasites that can propagate throughout host genomes. Mammalian genomes are typically dominated by LINE retrotransposons and their associated SINEs, and germline mobilization is a challenge to genome integrity. There are defenses against TE proliferation and the PIWI/piRNA defense is among the most well understood. However, the PIWI/piRNA system has been investigated largely in animals with actively mobilizing TEs and it is unclear how the PIWI/piRNA system functions in the absence of mobilizing TEs. The 13-lined ground squirrel provides the opportunity to examine PIWI/piRNA and TE dynamics within the context of minimal, and possibly nonexistent, TE accumulation. To do so, we compared the PIWI/piRNA dynamics in squirrels to observations from the rabbit and mouse. Despite a lack of young insertions in squirrels, TEs were still actively transcribed at higher levels compared to mouse and rabbit. All three Piwi genes were not expressed, prior to P8 in squirrel testis, and there was little TE expression change with the onset of Piwi expression. We also demonstrated there was not a major expression change in the young squirrel LINE families in the transition from juvenile to adult testis in contrast to young mouse and rabbit LINE families. These observations lead us to conclude that PIWI suppression, was weaker for squirrel LINEs and SINEs and did not strongly reduce their transcription. We speculate that, although the PIWI/piRNA system is adaptable to novel TE threats, transcripts from TEs that are no longer threatening receive less attention from PIWI proteins.
Asunto(s)
Elementos Transponibles de ADN , Roedores , Animales , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Conejos , Roedores/genética , Roedores/metabolismo , Testículo/metabolismoRESUMEN
The gut microbiota is important for host health and immune system function. Moreover autoimmune diseases, such as rheumatoid arthritis, are associated with significant gut microbiota dysbiosis, although the causes and consequences of this are not fully understood. It has become clear that the composition and metabolic outputs of the microbiome exhibit robust 24 h oscillations, a result of daily variation in timing of food intake as well as rhythmic circadian clock function in the gut. Here, we report that experimental inflammatory arthritis leads to a re-organization of circadian rhythmicity in both the gut and associated microbiome. Mice with collagen induced arthritis exhibited extensive changes in rhythmic gene expression in the colon, and reduced barrier integrity. Re-modeling of the host gut circadian transcriptome was accompanied by significant alteration of the microbiota, including widespread loss of rhythmicity in symbiont species of Lactobacillus, and alteration in circulating microbial derived factors, such as tryptophan metabolites, which are associated with maintenance of barrier function and immune cell populations within the gut. These findings highlight that altered circadian rhythmicity during inflammatory disease contributes to dysregulation of gut integrity and microbiome function.
Asunto(s)
Artritis Experimental , Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Disbiosis/etiología , Artritis Experimental/complicaciones , ColágenoRESUMEN
Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ayuno Intermitente , Ingestión de Energía , Dieta , Conducta Alimentaria , Ingestión de AlimentosRESUMEN
Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.
Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , RoedoresRESUMEN
Increasing evidence indicates that circadian and diurnal rhythms robustly influence stroke onset, mechanism, progression, recovery, and response to therapy in human patients. Pioneering initial investigations yielded important insights but were often single-center series, used basic imaging approaches, and used conflicting definitions of key data elements, including what constitutes daytime versus nighttime. Contemporary methodologic advances in human neurovascular investigation have the potential to substantially increase understanding, including the use of large multicenter and national data registries, detailed clinical trial data sets, analysis guided by individual patient chronotype, and multimodal computed tomographic and magnetic resonance imaging. To fully harness the power of these approaches to enhance pathophysiologic knowledge, an important foundational step is to develop standardized definitions and coding guides for data collection, permitting rapid aggregation of data acquired in different studies, and ensuring a common framework for analysis. To meet this need, the Leducq Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) convened a Consensus Statement Working Group of leading international researchers in cerebrovascular and circadian/diurnal biology. Using an iterative, mixed-methods process, the working group developed 79 data standards, including 48 common data elements (23 new and 25 modified/unmodified from existing common data elements), 14 intervals for time-anchored analyses of different granularity, and 7 formal, validated scales. This portfolio of standardized data structures is now available to assist researchers in the design, implementation, aggregation, and interpretation of clinical, imaging, and population research related to the influence of human circadian/diurnal biology upon ischemic and hemorrhagic stroke.
Asunto(s)
Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Recolección de Datos , Proyectos de Investigación , Sistema de Registros , Biología , Estudios Multicéntricos como AsuntoRESUMEN
The circadian clock controls the physiological function of tissues through the regulation of thousands of genes in a cell-type-specific manner. The core cellular circadian clock is a transcription-translation negative feedback loop, which can recruit epigenetic regulators to facilitate temporal control of gene expression. Histone methyltransferase, mixed lineage leukemia gene 3 (MLL3) was reported to be required for the maintenance of circadian oscillations in cultured cells. Here, we test the role of MLL3 in circadian organization in whole animals. Using mice expressing catalytically inactive MLL3, we show that MLL3 methyltransferase activity is in fact not required for circadian oscillations in vitro in a range of tissues, nor for the maintenance of circadian behavioral rhythms in vivo. In contrast to a previous report, loss of MLL3-dependent methylation did not affect the global levels of H3K4 methylation in liver, indicating substantial compensation from other methyltransferases. Furthermore, we found little evidence of genomic repositioning of H3K4me3 marks. We did, however, observe repositioning of H3K4me1 from intronic regions to intergenic regions and gene promoters; however, there were no changes in H3K4me1 mark abundance around core circadian clock genes. Output functions of the circadian clock, such as control of inflammation, were largely intact in MLL3-methyltransferase-deficient mice, although some gene-specific changes were observed, with sexually dimorphic loss of circadian regulation of specific cytokines. Taken together, these observations indicate that MLL3-directed histone methylation is not essential for core circadian clock function; however, it may influence the inflammatory response.
Asunto(s)
Relojes Circadianos , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Ratones , Procesamiento Proteico-PostraduccionalRESUMEN
The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα-/- mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity.
Asunto(s)
Metabolismo Energético , Hígado/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/química , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genéticaRESUMEN
The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1-/- macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1-/- macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function.
Asunto(s)
Factores de Transcripción ARNTL/antagonistas & inhibidores , Factores de Transcripción ARNTL/genética , Movimiento Celular/efectos de los fármacos , Resistencia a la Enfermedad/genética , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Neumonía Neumocócica/metabolismo , Actinas/metabolismo , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Citoesqueleto , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Streptococcus pneumoniae/patogenicidad , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinß1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.
Asunto(s)
Proteínas CLOCK/antagonistas & inhibidores , Relojes Circadianos/fisiología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/efectos adversos , Proteínas CLOCK/genética , Proteínas CLOCK/uso terapéutico , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fibrosis Pulmonar Idiopática , Integrinas , Pulmón/patología , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , TranscriptomaRESUMEN
Liver homeostasis is strongly influenced by the circadian clock, an evolutionarily conserved mechanism synchronising physiology and behaviour across a 24-hour cycle. Disruption of the clock has been heavily implicated in the pathogenesis of metabolic dysfunction including non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Furthermore, many of the current NASH drug candidates specifically target pathways known to be under circadian control including fatty acid synthesis and signalling via the farnesoid X receptor, fibroblast growth factor 19 and 21, peroxisome proliferator-activated receptor α and γ, glucagon-like peptide 1, and the thyroid hormone receptor. Despite this, there has been little consideration of the application of chronopharmacology in NASH, a strategy whereby the timing of drug delivery is informed by biological rhythms in order to maximise efficacy and tolerability. Chronopharmacology has been shown to have significant clinical benefits in a variety of settings including cardiovascular disease and cancer therapy. The rationale for its application in NASH is therefore compelling. However, no clinical trials in NASH have specifically explored the impact of drug timing on disease progression and patient outcomes. This may contribute to the wide variability in reported outcomes of NASH trials and partly explain why even late-phase trials have stalled because of a lack of efficacy or safety concerns. In this opinion piece, we describe the potential for chronopharmacology in NASH, discuss how the major NASH drug candidates are influenced by circadian biology, and encourage greater consideration of the timing of drug administration in the design of future clinical trials.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Progresión de la Enfermedad , Péptido 1 Similar al Glucagón , Humanos , Lipogénesis , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR, also known as NR3C1) to regulate immunity, energy metabolism and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. Here, we show that GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following GC treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function, and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Movimiento Celular , Citosol , Expresión Génica , Glucocorticoides/farmacología , Histona Desacetilasa 6 , Receptores de Glucocorticoides/genéticaRESUMEN
Over the last 60 years we have seen a significant rise in metabolic disease, especially type 2 diabetes. In the same period, the emergence of electricity and artificial lighting has allowed our behavioural cycles to be independent of external patterns of sunlight. This has led to a corresponding increase in sleep deprivation, estimated to be about 1 hour per night, as well as circadian misalignment (living against the clock). Evidence from experimental animals as well as controlled human subjects have shown that sleep deprivation and circadian misalignment can both directly drive metabolic dysfunction, causing diabetes. However, the precise mechanism by which these processes contribute to insulin resistance remains poorly understood. In this article, we will review the new literature in the field and propose a model attempting to reconcile the experimental observations made. We believe our model will serve as a useful point of reference to understand how metabolic dysfunction can emerge from sleep or circadian rhythm disruptions, providing new directions for research and therapy.
Asunto(s)
Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Animales , Humanos , Iluminación , Sueño , Privación de SueñoRESUMEN
OBJECTIVE: Thyroid status in the months following radioiodine (RI) treatment for Graves' disease can be unstable. Our objective was to quantify frequency of abnormal thyroid function post-RI and compare effectiveness of common management strategies. DESIGN: Retrospective, multicentre and observational study. PATIENTS: Adult patients with Graves' disease treated with RI with 12 months' follow-up. MEASUREMENTS: Euthyroidism was defined as both serum thyrotropin (thyroid-stimulating hormone [TSH]) and free thyroxine (FT4) within their reference ranges or, when only one was available, it was within its reference range; hypothyroidism as TSH ≥ 10 mU/L, or subnormal FT4 regardless of TSH; hyperthyroidism as TSH below and FT4 above their reference ranges; dysthyroidism as the sum of hypo- and hyperthyroidism; subclinical hypothyroidism as normal FT4 and TSH between the upper limit of normal and <10 mU/L; and subclinical hyperthyroidism as low TSH and normal FT4. RESULTS: Of 812 patients studied post-RI, hypothyroidism occurred in 80.7% and hyperthyroidism in 48.6% of patients. Three principal post-RI management strategies were employed: (a) antithyroid drugs alone, (b) levothyroxine alone, and (c) combination of the two. Differences among these were small. Adherence to national guidelines regarding monitoring thyroid function in the first 6 months was low (21.4%-28.7%). No negative outcomes (new-onset/exacerbation of Graves' orbitopathy, weight gain, and cardiovascular events) were associated with dysthyroidism. There were significant differences in demographics, clinical practice, and thyroid status postradioiodine between centres. CONCLUSIONS: Dysthyroidism in the 12 months post-RI was common. Differences between post-RI strategies were small, suggesting these interventions alone are unlikely to address the high frequency of dysthyroidism.
Asunto(s)
Enfermedad de Graves , Oftalmopatía de Graves , Hipertiroidismo , Hipotiroidismo , Adulto , Antitiroideos/uso terapéutico , Enfermedad de Graves/radioterapia , Humanos , Hipertiroidismo/radioterapia , Hipotiroidismo/tratamiento farmacológico , Radioisótopos de Yodo/uso terapéutico , Estudios Retrospectivos , Tirotropina , Tiroxina/uso terapéuticoRESUMEN
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Asunto(s)
Ritmo Circadiano , Psoriasis , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cronoterapia , Psoriasis/metabolismo , Piel/metabolismoRESUMEN
Robust inflammatory responses are critical to survival following respiratory infection, with current attention focused on the clinical consequences of the Coronavirus pandemic. Epigenetic factors are increasingly recognized as important determinants of immune responses, and EZH2 is a prominent target due to the availability of highly specific and efficacious antagonists. However, very little is known about the role of EZH2 in the myeloid lineage. Here, we show EZH2 acts in macrophages to limit inflammatory responses to activation, and in neutrophils for chemotaxis. Selective genetic deletion in macrophages results in a remarkable gain in protection from infection with the prevalent lung pathogen, pneumococcus. In contrast, neutrophils lacking EZH2 showed impaired mobility in response to chemotactic signals, and resulted in increased susceptibility to pneumococcus. In summary, EZH2 shows complex, and divergent roles in different myeloid lineages, likely contributing to the earlier conflicting reports. Compounds targeting EZH2 are likely to impair mucosal immunity; however, they may prove useful for conditions driven by pulmonary neutrophil influx, such as adult respiratory distress syndrome.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Animales , Células Cultivadas , Macrófagos/citología , Ratones Endogámicos C57BL , Neutrófilos/citologíaRESUMEN
PURPOSE: Neuroendocrine tumors (NETs) negatively impact patients' quality of life. Octreotide long-acting release (LAR) and lanreotide depot are somatostatin analogs (SSAs) approved to treat NETs. The study objective was to explore SSA treatment experiences and preferences of patients with NETs. METHODS: Qualitative interviews were conducted in US adults (≥ 21 years) with NETs who had ≥ 6 months' treatment with each SSA and transitioned from octreotide LAR to lanreotide depot within the previous year. Participants were asked open-ended questions about their experiences with octreotide LAR and lanreotide depot, treatment preferences, and SSA treatment attributes. RESULTS: Twenty participants (mean age: 58 years; 90% female; 85% white) completed interviews. The most common reasons for treatment transition were doctor recommendation (70%), treatment not working as expected (55%), and injection type preference (45%). Participants reported 34 unique favorable attributes of SSA treatment and 82 unique unfavorable attributes. Symptom control was the most frequently reported favorable attribute (associated with octreotide LAR by 60% of participants and lanreotide depot by 65%). Painful injection (65%) was most frequently cited unfavorable attribute for octreotide LAR and injection experience dependent on administrator (35%) for lanreotide depot. The three SSA treatment attributes rated as most important were side effects, symptom control, and ability to stabilize tumor. CONCLUSION: Our qualitative data provide valuable insight into the treatment attributes that patients with NETs consider important when making SSA treatment decisions. Factors related to injection administration, side effects, and symptom control are important to patients and should be included in patient-provider communications in clinical contexts.
Asunto(s)
Tumores Neuroendocrinos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/tratamiento farmacológico , Octreótido/uso terapéutico , Calidad de Vida , SomatostatinaRESUMEN
All life of Earth has evolved mechanisms to track time. This permits anticipation of predictable changes in light/dark, and in most cases also directs fed/fasted cycles, and sleep/wake. The nuclear receptors enjoy a close relationship with the molecular machinery of the clock. Some play a core role within the circadian machinery, other respond to ligands which oscillate in concentration, and physical cross-talk between clock transcription factors, eg cryptochromes, and multiple nuclear receptors also enable coupling of nuclear receptor function to time of day. Essential processes including inflammation, and energy metabolism are strongly regulated by both the circadian machinery, and rhythmic behaviour, and also by multiple members of the nuclear receptor family. An emerging theme is reciprocal regulation of key processes by different members of the nuclear receptor family, for example NR1D1/2, and NR1F1, in regulation of the core circadian clock transcription factor BMAL1.