Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889266

RESUMEN

Aging is a natural biological process that manifests as the progressive loss of function in cells, tissues, and organs. Because mechanisms that are meant to promote cellular longevity tend to decrease in effectiveness with age, it is no surprise that aging presents as a major risk factor for many diseases such as cardiovascular disease, neurodegenerative disorders, cancer, and diabetes. Oxidative stress, an imbalance between the intracellular antioxidant and overproduction of reactive oxygen species, is known to promote the aging process. Autophagy, a major pathway for protein turnover, is considered as one of the hallmarks of aging. Given the progressive physiologic degeneration and increased risk for disease that accompanies aging, many studies have attempted to discover new compounds that may aid in the reversal of the aging process. Here, we summarize the antiaging mechanism of natural or naturally derived synthetic compounds involving oxidative stress and autophagy. These compounds include: 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) derivatives (synthetic triterpenoids derived from naturally occurring oleanolic acid), caffeic acid phenethyl ester (CAPE, the active ingredient in honey bee propolis), xanthohumol (a prenylated flavonoid identified in the hops plant), guggulsterone (a plant steroid found in the resin of the guggul plant), resveratrol (a natural phenol abundantly found in grape), and sulforaphane (a sulfur-containing compound found in cruciferous vegetables).


Asunto(s)
Ácido Oleanólico , Autofagia , Ácido Oleanólico/análogos & derivados , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
Anticancer Drugs ; 31(8): 806-818, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32304407

RESUMEN

Multiple myeloma is a blood cell cancer and can cause symptoms such as bone loss and fatigue. Recent studies have shown that the bone marrow microenvironment may mediate tumor proliferation, drug resistance, and migration of the multiple myeloma cells. Synthetic triterpenoids have been used for the treatment of cancer due to their antiproliferative and anti-inflammatory effects. The objective of this study is to examine the effect of 2-cyano-3, 12 dioxoolean-1,9-dien-28-oic acid (CDDO) derivatives on human multiple myeloma cells. Three CDDO derivatives, such as CDDO-methyl ester, CDDO-trifluroethyl amide, and CDDO-imidazolide (Im), were tested on the growth of human multiple myeloma cells. Our results show that all CDDO derivatives decrease the viability of multiple myeloma cells in a dose- and time-dependent manner, with CDDO-Im being the most potent. CDDO-Im was selected to investigate whether its inhibitory effect on multiple myeloma cell growth is due to cell cycle arrest and induction of apoptosis. The results suggest that CDDO-Im may inhibit cell cycle progression in the G0/G1 phase and induce the intrinsic apoptotic pathway. The effect of CDDO-Im on multiple myeloma cells was evaluated in a Transwell model using myeloma cells co-culturing with human HS-5 stromal cells to simulate the bone marrow microenvironment in vitro. The results showed that CDDO-Im induced multiple myeloma cell apoptosis in the presence of HS-5 cells, albeit to a lower extent than in multiple myeloma cells cultured alone. In conclusion, our data suggest that CDDO-Im inhibits the growth of multiple myeloma cells, either cultured alone or co-cultured with bone marrow stromal cells, through the induction of apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Mieloma Múltiple/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Células del Estroma/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Humanos , Imidazoles/química , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Células del Estroma/metabolismo , Células del Estroma/patología , Células Tumorales Cultivadas
3.
Artículo en Inglés | MEDLINE | ID: mdl-28145849

RESUMEN

People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition; however, limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination with produce more severe adverse health outcomes than any one factor alone. Deficiencies in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to ambient air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body's response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Micronutrientes/metabolismo , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Animales , Humanos , Ratones , Micronutrientes/deficiencia , Modelos Animales , Ratas
4.
Front Chem ; 10: 1100460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712981

RESUMEN

Recent studies have shown that RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease (3CLpro), and papain-like protease (PLpro) are necessary for SARS-CoV-2 replication. Among these three enzymes, PLpro exhibits both proteolytic and deubiquitinase (DUB) activity and is responsible for disrupting the host's innate immune response against SARS-CoV-2. Because of this unique property of PLpro, we investigated the inhibitory effects of phytochemicals on the SARS-CoV-2 PLpro enzyme. Our data indicates that the phytochemicals such as catechin, epigallocatechin gallate (EGCG), mangiferin, myricetin, rutin, and theaflavin exhibited inhibitory activity with IC50 values of 14.2, 128.4, 95.3, 12.1, and 43.4, and 7.3 µM, respectively, towards PLpro proteolytic activity. However, the IC50 values of quercetin, oleuropein, and γ-mangostin are ambiguous. We observed that EGCG, mangiferin, myricetin, oleuropein, rutin, and theaflavin have also inhibited the DUB activity with IC50 values of 44.7, 104.3, 29.2, 131.5, 61.7, and 13.2 µM, respectively. Mechanistically, the ligand-protein interaction structural modeling suggests that mangiferin, EGCG, theaflavin, and oleuropein shows that these four ligands interact with Glu167, and Tyr268, however mangiferin and oleuropein showed very weak interaction with Glu167 as compared to EGCG, and theaflavin which reflects their low IC50 values for DUB activity. Our data indicate that the phytochemicals mentioned above inhibit the proteolytic and DUB activity of SARS-CoV-2 PLpro, thus preventing viral replication and promoting host innate immune response. However, the therapeutic potential of these phytochemicals needs to be validated by pre-clinical and clinical studies.

5.
Sci Rep ; 12(1): 2145, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140265

RESUMEN

The most common host entry point of human adapted coronaviruses (CoV) including SARS-CoV-2 is through the initial colonization in the nostril and mouth region which is responsible for spread of the infection. Most recent studies suggest that the commercially available oral and nasal rinse products are effective in inhibiting the viral replication. However, the anti-viral mechanism of the active ingredients present in the oral rinses have not been studied. In the present study, we have assessed in vitro enzymatic inhibitory activity of active ingredients in the oral mouth rinse products: aloin A and B, chlorhexidine, eucalyptol, hexetidine, menthol, triclosan, methyl salicylate, sodium fluoride and povidone, against two important proteases of SARS-CoV-2 PLpro and 3CLpro. Our results indicate only aloin A and B effectively inhibited proteolytic activity of PLpro with an IC50 of 13.16 and 16.08 µM. Interestingly, neither of the aloin isoforms inhibited 3CLpro enzymatic activity. Computational structural modelling of aloin A and B interaction with PLpro revealed that, both aloin isoforms form hydrogen bond with Tyr268 of PLpro, which is critical for their proteolytic activity. Furthermore, 100 ns molecular dynamics (MD) simulation studies predicted that both aloin isoforms have strong interaction with Glu167, which is required for PLpro deubiquitination activity. Our results from the in vitro deubiquitinase inhibition assay show that aloin A and B isomers exhibit deubiquitination inhibitory activity with an IC50 value of 15.68 and 17.51 µM, respectively. In conclusion, the isoforms of aloin inhibit both proteolytic and the deubiquitinating activity of SARS-CoV-2 PLpro, suggesting potential in inhibiting the replication of SARS-CoV-2 virus.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Emodina/análogos & derivados , SARS-CoV-2/enzimología , Animales , Sitios de Unión , COVID-19/patología , COVID-19/virología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Emodina/química , Emodina/metabolismo , Emodina/farmacología , Humanos , Simulación de Dinámica Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , SARS-CoV-2/aislamiento & purificación , Células Vero
6.
Toxicology ; 463: 152972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606950

RESUMEN

The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.


Asunto(s)
Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Disruptores Endocrinos/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Disruptores Endocrinos/toxicidad , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Obesidad/metabolismo , Termogénesis/efectos de los fármacos
7.
Commun Biol ; 4(1): 93, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473151

RESUMEN

Emerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Descubrimiento de Drogas , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/química , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , SARS-CoV-2/enzimología , Relación Estructura-Actividad
8.
Sci Rep ; 10(1): 14589, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883997

RESUMEN

Lipocalin-2 (Lcn2) is an innate immune protein elevated by several orders of magnitude in various inflammatory conditions including aging and obesity. Recent studies have shown that Lcn2 is secreted by adipocytes in response to inflammation and is categorized as a new adipokine cross-linking innate immunity and metabolic disorders including obesity. However, the involvement of Lcn2 and its function during the progression of obesity is largely unknown. Recently, browning of white adipose tissue (WAT) has gained attention as a therapeutic strategy to combat obesity. Herein, we have shown that treatment of mature 3T3-L1 adipocytes with recombinant Lcn2 (rec-Lcn2) resulted in the up-regulation of thermogenic and beige/brown markers (UCP1, PRDM16, ZIC-1 and TBX1) and increased mitochondrial activity. Additionally, global Lcn2 genetic knockout (Lcn2KO) mice exhibited accelerated weight gain and visceral fat deposition with age, when compared to wild type (WT) mice. Taken together, both in vitro and in vivo studies suggest that Lcn2 is a naturally occurring adipokine, and may serve as an anti-obesity agent by upregulating the thermogenic markers resulting in the browning of WAT. Therefore, Lcn2 and its downstream signaling pathways could be a potential therapeutic target for obesity.


Asunto(s)
Tejido Adiposo/patología , Envejecimiento , Grasa Intraabdominal/patología , Lipocalina 2/fisiología , Obesidad/fisiopatología , Células 3T3-L1 , Tejido Adiposo/metabolismo , Animales , Femenino , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis , Aumento de Peso
9.
Nutrients ; 12(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679753

RESUMEN

Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.


Asunto(s)
Animales Lactantes/fisiología , Animales Lactantes/psicología , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Cognición/fisiología , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Conducta Exploratoria/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Intercambio Materno-Fetal/fisiología , Porcinos/fisiología , Porcinos/psicología , Animales , Animales Lactantes/crecimiento & desarrollo , Monoaminas Biogénicas/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/crecimiento & desarrollo , Lactancia/fisiología , Imagen por Resonancia Magnética , Neurotransmisores/metabolismo , Embarazo
10.
J Nutr Biochem ; 20(2): 140-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18547799

RESUMEN

Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Genisteína/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Criopreservación , Sondas de ADN , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Cinética , PPAR gamma/genética , ARN/efectos de los fármacos , ARN/genética , ARN Ribosómico 18S/efectos de los fármacos , ARN Ribosómico 18S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Phytother Res ; 23(4): 513-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19051208

RESUMEN

This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes.


Asunto(s)
Adipogénesis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Disulfuros/farmacología , Ajo/química , Células 3T3-L1 , Animales , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Lípidos/análisis , Ratones , Sulfóxidos
12.
Medicines (Basel) ; 6(1)2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30709026

RESUMEN

Background: Plant-derived phytochemicals have been of emerging interest as anti-obesity compounds due to their apparent effects on promoting reduced lipid accumulation in adipocytes. Despite such promising evidence, little is known about the potential mechanisms behind their anti-obesity effects. The aim of this study is to establish potential anti-obesity effects of the phytochemical guggulsterone (GS). Methods: Mature 3T3-L1 adipocytes were treated with GS, derived from the guggul plant native in northern India, to investigate its effects on mitochondrial biogenesis and adipocyte "beiging." Further, to explore the relationship between macrophages and adipocytes, 3T3-L1s were treated with conditioned media from GS-treated RAW264.7 macrophages. Markers of mitochondrial biogenesis and beiging were measured by western blot. Results: GS treatment in adipocytes resulted in increased mitochondrial density, biogenesis (PGC1α and PPARγ), and increased markers of a beige adipocyte phenotype (UCP1, TBX1, and ß-3AR). This upregulation in mitochondrial expression was accompanied by increases oxygen consumption. In GS-treated macrophages, markers of M2 polarization were elevated (e.g., arginase and IL-10), along with increased catecholamine release into the media. Lastly, 3T3-L1 adipocytes treated with conditioned media from macrophages induced a 167.8% increase in UCP1 expression, suggestive of a role of macrophages in eliciting an anti-adipogenic response to GS. Conclusions: Results from this study provide the first mechanistic understanding of the anti-obesity effects of GS and suggests a role for both direct GS-signaling and indirect stimulation of M2 macrophage polarization in this model.

13.
Antioxidants (Basel) ; 8(6)2019 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-31234608

RESUMEN

Green tea and its catechins have been shown to ameliorate high fat diet-induced oxidative stress and hyperlipidemia. However, low bioavailability of catechins limits their therapeutic potential. Lemon juice (LJ) has been suggested to enhance the bioavailability of catechins in vitro. This study investigated the antioxidative and hypolipidemic efficacy of a single dose of green tea extract (GTE) or GTE plus LJ (GTE + LJ) in high-fat diet fed pigs. Sixteen pigs ingested a single dose of GTE (190 mg/kg/day) or GTE + LJ (0.75 mL/kg/day) mixed with low-fat (LF; 5% fat) or high-fat (HF; 22% fat) diets and blood samples were collected for 24 h. Plasma catechin level peaked at two hours, and gradually returned to baseline after six hours following the intake. The addition of LJ significantly increased plasma catechin level. The diet containing GTE did not lower plasma cholesterol and triacylglycerol (TG) concentrations, superoxide dismutase (SOD) and catalase activity, or malondialdehyde concentration in 24 h in HF-fed pigs. Addition of a single dose of LJ, however, significantly decreased plasma TG level in LF groups but did not cause further changes on any other markers compared to the GTE alone. Our findings indicate limited effect of a single meal containing GTE on plasma antioxidant enzymes, lipid profile, and lipid peroxidation in pigs and no significant synergistic/additive action of adding LJ to GTE within 24 h in pigs. A study with a longer treatment period is warranted to further understand the potential role of GTE in reducing HF diet-induced oxidative stress and the possible synergistic role of LJ.

14.
Biochem Biophys Res Commun ; 368(3): 815-9, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18275845

RESUMEN

Apelin, the endogenous ligand of the G protein-coupled APJ receptor has been shown to promote tumor angiogenesis. However, the effect of apelin on inducing angiogenesis in adipose tissue has not been investigated. In this review, we propose a putative role for apelin in promoting angiogenesis in adipose tissue. We further propose that targeting adipose tissue vasculature by blocking apelin signaling with anti-apelin antibodies will lead not only to inhibition of angiogenesis in adipose tissue but also to decreased adiposity.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Neovascularización Patológica/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Animales , Apelina , Humanos
15.
J Nutr Biochem ; 19(11): 717-26, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18495457

RESUMEN

Natural products have potential for inducing apoptosis, inhibiting adipogenesis and stimulating lipolysis in adipocytes. The objective of this review is to discuss the adipocyte life cycle and various dietary bioactives that target different stages of adipocyte life cycle. Different stages of adipocyte development include preadipocytes, maturing preadipocytes and mature adipocytes. Various dietary bioactives like genistein, conjugated linoleic acid (CLA), docosahexaenoic acid, epigallocatechin gallate, quercetin, resveratrol and ajoene affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted monotherapy has resulted in lack of success. Thus, targeting several signal transduction pathways simultaneously with multiple natural products to achieve additive or synergistic effects might be an appropriate approach to address obesity. We have previously reported two such combinations, namely, ajoene+CLA and vitamin D+genistein. CLA enhanced ajoene-induced apoptosis in mature 3T3-L1 adipocytes by synergistically increasing the expression of several proapoptotic factors. Similarly, genistein potentiated vitamin D's inhibition of adipogenesis and induction of apoptosis in maturing preadipocytes by an enhanced expression of VDR (vitamin D receptor) protein. These two examples indicate that combination therapy employing compounds that target different stages of the adipocyte life cycle might prove beneficial for decreasing adipose tissue volume by inducing apoptosis or by inhibiting adipogenesis or both.


Asunto(s)
Adipocitos/efectos de los fármacos , Fitoterapia/instrumentación , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis , Animales , Apoptosis , Depresores del Apetito/farmacología , Genisteína/farmacología , Humanos , Metabolismo de los Lípidos , Lípidos/química , Lipólisis/efectos de los fármacos , Ratones , Obesidad/terapia , Fitoterapia/métodos
16.
Life Sci ; 82(19-20): 1032-9, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18433793

RESUMEN

Certain flavonoids have been shown to have specific effects on biochemical and metabolic functions of adipocytes. In this study, we investigated the effects of combinations of resveratrol and quercetin on adipogenesis and apoptosis in 3T3-L1 cells. In maturing preadipocytes resveratrol and quercetin at 25 microM individually suppressed intracellular lipid accumulation by 9.4+/-3.9% (p<0.01) and 15.9+/-2.5%, respectively, (p<0.001). The combination of resveratrol and quercetin at the same dose, however, decreased lipid accumulation by 68.6+/-0.7% (p<0.001). In addition, combinations of resveratrol and quercetin at 25 microM significantly decreased the expression of peroxisome proliferators-activated receptor gamma (PPAR gamma) and CCAAT/enhancer-binding protein (C/EBP)alpha, both of which act as key transcription factors. In mature adipocytes resveratrol and quercetin at 100 microM individually decreased viability by 18.1+/-0.6% (p<0.001) and 15.8+/-1% (p<0.001) and increased apoptosis (100 microM) by 120.5+/-8.3% (p<0.001) and 85.3+/-10% (p<0.001) at 48 h, respectively. Combinations of resveratrol and quercetin further decreased viability (73.5+/-0.9%, p<0.001) and increased apoptosis (310.3+/-9.6%, p<0.001) more than single compounds alone. The combination of resveratrol and quercetin at 100 muM increased release of cytochrome c from mitochondria to cytosol and decreased ERK 1/2 phosphorylation. Taken together, our data indicate that combinations of resveratrol and quercetin can exert potential anti-obesity effects by inhibiting differentiation of preadipocytes and inducing apoptosis of mature adipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Quercetina/farmacología , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/citología , Animales , Antioxidantes/administración & dosificación , Western Blotting , Proteína alfa Potenciadora de Unión a CCAAT/biosíntesis , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Sinergismo Farmacológico , Ratones , Microscopía Fluorescente , PPAR gamma/biosíntesis , Quercetina/administración & dosificación , Resveratrol , Estilbenos/administración & dosificación
17.
Biofactors ; 33(2): 137-48, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19346589

RESUMEN

Withaferin A (WA), a highly oxygenated steroidal lactone that is found in the medicinal plant Withania somnifera (also called ashwagandha) has been reported to have anti-tumor, anti-angiogenesis, and pro-apoptotic activity. We investigated the effects of WA on viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. Pre- and post-confluent preadipocytes and mature adipocytes were treated with WA (1-25 microM) up to 24 hrs. Viability and apoptosis were measured by CellTiter-Blue Cell Viability Assay and single strand DNA ELISA Assay, respectively. WA decreased viability and induced apoptosis in all stages of cells. Induction of apoptosis by WA in mature adipocytes was mediated by increased ERK1/2 phosphorylation and altered Bax and Bcl2 protein expression. The effect of WA on adipogenesis was examined by AdipoRed Assay after treating with WA (0.1-1 microM) during the differentiation period. WA decreased lipid accumulation in a dose-dependent manner and decreased the expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte fatty acid binding protein. The effects on apoptosis and lipid accumulation were also confirmed with Hoechst staining and Oil Red O staining, respectively. These results show that WA acts on adipocytes to reduce cell viability and adipogenesis and also induce apoptosis.


Asunto(s)
Adipocitos/citología , Adipogénesis , Apoptosis/efectos de los fármacos , Ergosterol/análogos & derivados , Células 3T3-L1 , Adipocitos/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Ergosterol/farmacología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , PPAR gamma/metabolismo , Fosforilación , Factores de Tiempo , Witanólidos
18.
Phytother Res ; 22(10): 1367-71, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18688788

RESUMEN

Resveratrol, a phytoallexin, has recently been reported to slow aging by acting as a sirtuin activator. Resveratrol also has a wide range of pharmacological effects on adipocytes. In this study, we investigated the effects of resveratrol on adipogenesis and apoptosis using 3T3-L1 cells. In mature adipocytes, 100 and 200 microM resveratrol decreased cell viability dose-dependently by 23 +/- 2.7%, and 75.3 +/- 2.8% (p < 0.0001), respectively, after 48 h treatment, and 100 microM resveratrol increased apoptosis by 76 +/- 8.7% (p < 0.0001). Resveratrol at 25 and 50 microM decreased lipid accumulation in maturing preadipocytes significantly by 43 +/- 1.27% and 94.3 +/- 0.3% (p < 0.0001) and decreased cell viability by 25 +/- 1.3% and 70.4 +/- 1.6% (p < 0.0001), respectively. In order to understand the anti-adipogenic effects of resveratrol, maturing 3T3-L1 preadipocytes were treated with 25 microM resveratrol and the change in the expression of several adipogenic transcription factors and enzymes was investigated using real-time RT-PCR. Resveratrol down-regulated the expression of PPAR gamma, C/EBP alpha, SREBP-1c, FAS, HSL, LPL and up-regulated the expression of genes regulating mitochondrial activity (SIRT3, UCP1 and Mfn2). These results indicate that resveratrol may alter fat mass by directly affecting cell viability and adipogenesis in maturing preadipocytes and inducing apoptosis in adipocytes and thus may have applications for the treatment of obesity.


Asunto(s)
Adipocitos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/citología , Animales , Secuencia de Bases , Cartilla de ADN , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos , Ratones , Resveratrol
19.
Antioxidants (Basel) ; 7(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347819

RESUMEN

Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been witnessed in pathophysiological states of many disorders. Compounds identified from natural sources have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. Here, we summarize the cytoprotective effects and mechanisms of natural or naturally derived synthetic compounds against oxidative stress. These compounds include: caffeic acid phenethyl ester (CAPE) found in honey bee propolis, curcumin from turmeric roots, resveratrol abundant in grape, and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a synthetic triterpenoid based on naturally occurring oleanolic acid. Cytoprotective effects of these compounds in diseases conditions like cardiovascular diseases and obesity to decrease oxidative stress are discussed.

20.
Nutr Metab (Lond) ; 15: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946343

RESUMEN

BACKGROUND: Obesity alters adipose tissue metabolic and endocrine functioning, leading to an increased adiposity and release of pro-inflammatory cytokines. Various phytochemicals have been reported to contribute to the beiging of white adipose tissue in order to ameliorate obesity by increasing thermogenesis. Here, we show that the prenylated chalcone, xanthohumol (XN), induces beiging of white adipocytes, stimulates lipolysis, and inhibits adipogenesis of murine 3T3-L1 adipocytes and primary human subcutaneous preadipocytes and these effects are partly mediated by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. METHODS: 3T3-L1 adipocytes and primary human subcutaneous preadipocytes were differentiated using a standard protocol and were treated with various concentrations of XN, dorsomorphin, an AMPK inhibitor, or AICAR, an AMPK activator, to investigate the effects on adipogenesis, beiging and lipolysis. RESULTS: XN induced beiging of white adipocytes as witnessed by the increased expression of beige markers CIDE-A and TBX-1. XN increased mitochondrial biogenesis, as evidenced by increased mitochondrial content, enhanced expression of PGC-1α, and the thermogenic protein UCP1. Following 24 h of treatment, XN also increased oxygen consumption rate. XN stimulated lipolysis of mature 3T3-L1 and primary human subcutaneous adipocytes and inhibited adipogenesis of maturing adipocytes. XN activated AMPK and in turn, XN-induced upregulation of UCP1, p-ACC, HSL, and ATGL was downregulated in the presence of dorsomorphin. Likewise, an XN-induced decrease in adipogenesis was reversed in the presence of dorsomorphin. CONCLUSIONS: Taken together, XN demonstrates anti-obesity effects by not only inducing beiging but also decreasing adipogenesis and inducing lipolysis. The anti-obesity effects of XN are partly mediated by AMPK signaling pathway suggesting that XN may have potential therapeutic implications for obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA