Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 33, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448800

RESUMEN

Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.


Asunto(s)
Contaminantes Ambientales , Microbiota , Neoplasias , Humanos , Receptores de Hidrocarburo de Aril , Carcinogénesis , Microambiente Tumoral
2.
Mol Cell Biochem ; 477(6): 1865-1872, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35334035

RESUMEN

Diabetes mellitus (DM)-induced cardiac morbidities have been the leading cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2 (SGLT-2) inhibitors including empagliflozin (EMPA), which have been approved for the treatment of DM, have gained attention for their cardioprotective effect. The mechanism by which SGLT-2 inhibitors exert their cardioprotective effect remains unclear. Recent studies have suggested that EMPA exerts its cardioprotective effect by inhibiting the Na+/H+ exchanger (NHE), a group of membrane proteins that regulate intracellular pH and cell volume. Increased activity and expression of NHE isoform 1 (NHE1), the predominant isoform expressed in the heart, leads to cardiac hypertrophy. p90 ribosomal s6 kinase (p90 RSK) has been demonstrated to stimulate NHE1 activity. In our study, H9c2 cardiomyoblasts were treated with angiotensin II (ANG) to activate NHE1 and generate a hypertrophic model. We aimed to understand whether EMPA reverses the ANG-induced hypertrophic response and to elucidate the molecular pathway contributing to the cardioprotective effect of EMPA. Our study demonstrated that ANG-induced hypertrophy of H9c2 cardiomyoblasts is accompanied with increased SGLT-1 and NHE1 protein expression, an effect which is prevented in the presence of EMPA. EMPA reduces ANG-induced hypertrophy through the inhibition of SGLT-1 and NHE1 expression.


Asunto(s)
Angiotensina II , Miocitos Cardíacos , Angiotensina II/metabolismo , Angiotensina II/farmacología , Compuestos de Bencidrilo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Glucósidos/farmacología , Humanos , Miocitos Cardíacos/metabolismo
3.
Mol Biol Rep ; 49(3): 2321-2324, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35102475

RESUMEN

Numerous studies demonstrate parallels between CVD, type 2 diabetes mellitus (T2DM) and COVID-19 pathology, which accentuate pre-existing complications in patients infected with COVID-19 and potentially exacerbate the infection course. Antidiabetic drugs such as sodium-glucose transporter-2 (SGLT-2) inhibitors have garnered substantial attention recently due to their efficacy in reducing the severity of cardiorenal disease. The effect of SGLT-2 inhibitors in patients with COVID-19 remains unclear particularly since SGLT-2 inhibitors contribute to altering the RAAS cascade activity, which includes ACE-2, the major cell entry receptor for SARS-CoV2. A study, DARE-19, was carried out to unveil the effects of SGLT-2 inhibitor treatment on comorbid disease complications and concomitant COVID-19 outcomes and demonstrated no statistical significance. However, the need for further studies is essential to provide conclusive clinical findings.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , COVID-19/complicaciones , Glucósidos/uso terapéutico , Sistema Renina-Angiotensina/efectos de los fármacos , Insuficiencia Respiratoria/tratamiento farmacológico , SARS-CoV-2 , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enzima Convertidora de Angiotensina 2/fisiología , Ensayos Clínicos Fase III como Asunto , Método Doble Ciego , Reposicionamiento de Medicamentos , Cardiopatías/prevención & control , Humanos , Enfermedades Renales/prevención & control , Mitocondrias/efectos de los fármacos , Estudios Multicéntricos como Asunto , Estrés Oxidativo/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Virales/fisiología , Insuficiencia Respiratoria/etiología , Transportador 2 de Sodio-Glucosa/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
4.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884494

RESUMEN

Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Humanos
5.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34915673

RESUMEN

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Asunto(s)
COVID-19/prevención & control , Enfermedad Crónica/prevención & control , Enfermedad Crónica/terapia , Terapia Genética/métodos , Inmunoterapia/métodos , Pandemias/prevención & control , ARN Mensajero/química , SARS-CoV-2/inmunología , Vacunas Sintéticas , Vacunas de ARNm , Disponibilidad Biológica , Portadores de Fármacos , Predicción , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/uso terapéutico , Humanos , Inmunoterapia Activa , Sistema de Administración de Fármacos con Nanopartículas , Estabilidad del ARN , ARN Mensajero/administración & dosificación , ARN Mensajero/inmunología , ARN Mensajero/uso terapéutico , SARS-CoV-2/genética , Desarrollo de Vacunas , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA