Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pflugers Arch ; 466(7): 1437-50, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24132829

RESUMEN

The entorhinal cortex (EC) is divided into medial (MEC) and lateral (LEC) anatomical areas, and layer II neurons of these two regions project to granule cells of the dentate gyrus through the medial and lateral perforant pathways (MPP and LPP), respectively. Stellate cells (SCs) represent the main neurons constituting the MPP inputs, while fan cells (FCs) represent the main LPP inputs. Here, we first characterized the excitability properties of SCs and FCs in adult wild-type (WT) mouse brain. Our data indicate that, during sustained depolarization, action potentials (APs) generated by SCs exhibit increased fast afterhyperpolarization and overshoot, making them able to fire at higher frequencies and to exhibit higher spike frequency adaptation (SFA) than FCs. Since the EC is one of the earliest brain regions affected during Alzheimer's disease (AD) progression, we compared SCs and FCs firing in 4-month-old WT and transgenic Tg2576 mice, a well-established AD mouse model. Tg2576-SCs displayed a slight increase in firing frequency during mild depolarization but otherwise normal excitability properties during higher stimulations. On the contrary, Tg2576-FCs exhibited a decreased firing frequency during mild and higher depolarizations, as well as an increased SFA. Our data identify the FCs as a neuronal population particularly sensitive to early pathological effects of chronic accumulation of APP-derived peptides, as it occurs in Tg2576 mice. As FCs represent the major input of sensory information to the hippocampus during memory acquisition, early alterations in their excitability profile could significantly contribute to the onset of cognitive decline in AD.


Asunto(s)
Potenciales de Acción , Enfermedad de Alzheimer/fisiopatología , Corteza Entorrinal/fisiopatología , Neuronas/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Corteza Entorrinal/citología , Ratones
2.
Cell Rep ; 29(2): 317-331.e5, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597094

RESUMEN

There is a growing consensus that Alzheimer's disease (AD) involves failure of the homeostatic machinery, which underlies the firing stability of neural circuits. What are the culprits leading to neuron firing instability? The amyloid precursor protein (APP) is central to AD pathogenesis, and we recently showed that its intracellular domain (AICD) could modify synaptic signal integration. We now hypothesize that AICD modifies neuron firing activity, thus contributing to the disruption of memory processes. Using cellular, electrophysiological, and behavioral techniques, we show that pathological AICD levels weaken CA1 neuron firing activity through a gene-transcription-dependent mechanism. Furthermore, increased AICD production in hippocampal neurons modifies oscillatory activity, specifically in the γ-frequency range, and disrupts spatial memory task. Collectively, our data suggest that AICD pathological levels, observed in AD mouse models and in human patients, might contribute to progressive neuron homeostatic failure, driving the shift from normal aging to AD.


Asunto(s)
Potenciales de Acción/fisiología , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Región CA1 Hipocampal/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Animales , Canales de Calcio/metabolismo , Ritmo Gamma/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Canales de Potasio/metabolismo , Dominios Proteicos , Ratas Sprague-Dawley , Relación Estructura-Actividad , Transcripción Genética
3.
Elife ; 62017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28682239

RESUMEN

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer's disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patología , Neurogénesis/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA