Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 46(21): 12194-202, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22891924

RESUMEN

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001).


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Combustibles Fósiles , Ciudades , Monitoreo del Ambiente , Centrales Eléctricas , Estados Unidos , Emisiones de Vehículos/análisis
2.
Biotechniques ; 65(1): 37-39, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30014737

RESUMEN

Calcium dynamics is crucial for many signaling pathways and cell functions. Understanding how calcium regulates cell function often requires long-term imaging of calcium dynamics. Here we report a methodological approach of long-term (5-10 h) imaging of calcium dynamics in cultured cells. The approach links calcium imaging using genetically encoded calcium indicators and semi-automatic tracking of individual cells. It can be used in a large variety of situations, ranging from the role of calcium in biological processes to cell heterogeneity and screening of drugs modifying signaling pathways.


Asunto(s)
Calcio/metabolismo , Rastreo Celular/métodos , Células Cultivadas , Genes Reporteros , Células HeLa , Humanos , Indicadores y Reactivos , Microscopía de Contraste de Fase , Simulación de Dinámica Molecular , Imagen Óptica , Factores de Tiempo
3.
J Geophys Res Atmos ; 121(10): 5213-5236, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32818124

RESUMEN

Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA