Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Pathol ; 249(3): 332-342, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31259422

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of less than 4% and desperately needs novel effective therapeutics. Integrin αvß6 has been linked with poor prognosis in cancer but its potential as a target in PDAC remains unclear. We report that transcriptional expression analysis revealed that high levels of ß6 mRNA correlated strongly with significantly poorer survival (n = 491 cases, p = 3.17 × 10-8 ). In two separate cohorts, we showed that over 80% of PDACs expressed αvß6 protein and that paired metastases retained αvß6 expression. In vitro, integrin αvß6 promoted PDAC cell growth, survival, migration, and invasion. Treatment of both αvß6-positive human PDAC xenografts and transgenic mice bearing αvß6-positive PDAC with the αvß6 blocking antibody 264RAD, combined with gemcitabine, significantly reduced tumour growth (p < 0.0001) and increased survival (log-rank test, p < 0.05). Antibody therapy was associated with suppression of tumour cell activity (suppression of pErk growth signals, increased apoptosis seen as activated caspase-3) and suppression of the pro-tumourigenic microenvironment (suppression of TGFß signalling, fewer αSMA-positive myofibroblasts, decreased blood vessel density). These data show that αvß6 promotes PDAC growth through both tumour cell and tumour microenvironment mechanisms and represents a valuable target for PDAC therapy. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Integrinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Antígenos de Neoplasias/genética , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatasa 6 de Especificidad Dual/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras , Humanos , Integrasas/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Italia , Ratones Desnudos , Ratones Transgénicos , Invasividad Neoplásica , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Transducción de Señal , Carga Tumoral , Microambiente Tumoral , Reino Unido , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Clin Cancer Res ; 29(5): 888-898, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342102

RESUMEN

PURPOSE: This phase 1 study (NCT03440437) evaluated the safety, tolerability, pharmacokinetics (PK), and activity of FS118, a bispecific antibody-targeting LAG-3 and PD-L1, in patients with advanced cancer resistant to anti-PD-(L)1 therapy. PATIENTS AND METHODS: Patients with solid tumors, refractory to anti-PD-(L)1-based therapy, received intravenous FS118 weekly with an accelerated dose titration design (800 µg to 0.3 mg/kg) followed by 3+3 ascending dose expansion (1 to 20 mg/kg). Primary objectives were safety, tolerability, and PK. Additional endpoints included antitumor activity, immunogenicity, and pharmacodynamics. RESULTS: Forty-three patients with a median of three prior regimens in the locally advanced/metastatic setting, including at least one anti-PD-(L)1 regimen, received FS118 monotherapy. FS118 was well tolerated, with no serious adverse events relating to FS118 reported. No dose-limiting toxicities (DLT) were observed, and an MTD was not reached. The recommended phase 2 dose of FS118 was established as 10 mg/kg weekly. The terminal half-life was 3.9 days. Immunogenicity was transient. Pharmacodynamic activity was prolonged throughout dosing as demonstrated by sustained elevation of soluble LAG-3 and increased peripheral effector cells. The overall disease control rate (DCR) was 46.5%; this disease control was observed as stable disease, except for one late partial response. Disease control of 54.8% was observed in patients receiving 1 mg/kg or greater who had acquired resistance to PD-(L)1-targeted therapy. CONCLUSIONS: FS118 was well tolerated with no DLTs observed up to and including 20 mg/kg QW. Further studies are warranted to determine clinical benefit in patients who have become refractory to anti-PD-(L)1 therapy. See related commentary by Karapetyan and Luke, p. 835.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias , Humanos , Interferones , Antígeno B7-H1 , Neoplasias/patología , Antineoplásicos/efectos adversos , Anticuerpos Biespecíficos/efectos adversos , Inmunoterapia , Biología
3.
Cell Rep ; 38(4): 110227, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081338

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.


Asunto(s)
Invasividad Neoplásica/patología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología , Animales , Humanos , Ratones , Células Estrelladas Pancreáticas/metabolismo , Fenotipo , Proteína Quinasa C/metabolismo , Microambiente Tumoral/fisiología
4.
Theranostics ; 10(7): 2930-2942, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194845

RESUMEN

Goals of investigation: The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained at <5% for decades because no effective therapies have been identified. Integrin αvß6 is overexpressed in most PDAC and represents a promising therapeutic target. Thus, we attempted to develop an αvß6-specific peptide-drug conjugate (PDC) for therapy of PDAC. Methodology: We conjugated the DNA-binding pyrrolobenzodiazepine (PBD)-based payload SG3249 (tesirine) to an αvß6-specific 20mer peptide from the VP1 coat protein of foot-and-mouth-disease virus (FMDV) (forming conjugate SG3299) or to a non-targeting peptide (forming conjugate SG3511). PDCs were tested for specificity and toxicity on αvß6-negative versus-positive PDAC cells, patient-derived cell lines from tumor xenografts, and on two different in vivo models of PDAC. Immunohistochemical analyses were performed to establish therapeutic mechanism. Results: The αvß6-targeted PDC SG3299 was significantly more toxic (up to 78-fold) for αvß6-expressing versus αvß6-negative PDAC cell lines in vitro, and achieved significantly higher toxicity at equal dose than the non-targeted PDC SG3511 (up to 15-fold better). Moreover, SG3299 eliminated established (100mm3) Capan-1 PDAC human xenografts, extending the lifespan of mice significantly (P=0.005). Immunohistochemistry revealed SG3299 induced DNA damage and apoptosis (increased γH2AX and cleaved caspase 3, respectively) associated with significant reductions in proliferation (Ki67), ß6 expression and PDAC tumour growth. Conclusions: The FMDV-peptide drug conjugate SG3299 showed αvß6-selectivity in vitro and in vivo and can specifically eliminate αvß6-positive cancers, providing a promising new molecular- specific therapy for pancreatic cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de la Cápside/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Integrinas/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antígenos de Neoplasias , Benzodiazepinas/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Noqueados , Péptidos/uso terapéutico , Pirroles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA