RESUMEN
Post-traumatic stress disorder (PTSD) is more prevalent in women than men. PTSD is characterized by overgeneralization of fear to innocuous stimuli and involves impaired inhibition of learned fear by cues that predict safety. While evidence indicates that learned fear inhibition through extinction differs in males and females, less is known about sex differences in fear discrimination and safety learning. Here we examined auditory fear discrimination in male and female rats. In Experiment 1A, rats underwent 1-3days of discrimination training consisting of one tone predicting threat (CS+; presented with footshock) and another tone predicting safety (CS-; presented alone). Females, but not males, discriminated between the CS+ and CS- after one day of training. After 2-3days of training, however, males discriminated whereas females generalized between the CS+ and CS-. In Experiment 1B, females showed enhanced anxiety-like behaviour and locomotor activity in the open field, although these results were unlikely to explain the sex differences in fear discrimination. In Experiment 2, we found no differences in shock sensitivity between males and females. In Experiment 3, males and females again discriminated and generalized, respectively, after three days of training. Moreover, fear generalization in females resulted from impaired safety learning, as shown by a retardation test. Whereas subsequent fear conditioning to the previous CS- retarded learning in males, females showed no such retardation. These results suggest that, while females show fear discrimination with limited training, they show fear generalization with extended training due to impaired safety learning.
Asunto(s)
Percepción Auditiva/fisiología , Condicionamiento Clásico/fisiología , Señales (Psicología) , Discriminación en Psicología/fisiología , Miedo/fisiología , Generalización Psicológica/fisiología , Caracteres Sexuales , Animales , Femenino , Masculino , RatasRESUMEN
Background: Early trials of long-term lenalidomide use reported an increased incidence of second primary malignancy (SPM), including acute myeloid leukaemia and myelodysplastic syndrome. Later, meta-analysis suggested the link to be secondary to lenalidomide in combination with melphalan. Methods: Myeloma XI is a large, phase III randomised trial in-which lenalidomide was used at induction and maintenance, in transplant eligible (TE) and non-eligible (TNE) newly diagnosed patients (NCT01554852). Here we present an analysis of SPM incidence and profile the SPM type to determine the impact of autologous stem cell transplantation (ASCT) and lenalidomide exposure in 4358 patients treated on study. Data collection took place from the start of the trial in May 2010, to May 2019, as per the protocol timeline. The Median follow-up following maintenance randomisation was 54.5 and 46.1 months for TE and TNE patients, respectively. Findings: In the TE pathway, the overall SPM incidence was 7.7% in lenalidomide maintenance patients compared to 3.2% in those being observed (p = 0.006). Although the TNE lenalidomide maintenance patients had the greatest SPM incidence (15.4%), this was not statistically significant when compared to the observed patients (10%, p = 0.10).The SPM incidence was higher in patients who received lenalidomide at induction and maintenance (double exposure), when compared to those treated with lenalidomide at one time point (single exposure). Again, this was most marked in TNE patients where the overall SPM incidence was 16.9% in double exposed patients, compared to 11.7% in single exposed patients, and 11.2% in patients who did not receive lenalidomide (p = 0.04). This is likely an effect of treatment duration, with the median number of cycles being 27 in the TNE double exposed patients, vs 6 in the single exposure patients.Haematological SPMs were uncommon, diagnosed in 50 patients (incidence 1.1%). The majority of cases were diagnosed in TE patients treated with lenalidomide maintenance (n = 25, incidence 2.8%), suggesting a possible link with melphalan. Non-melanoma skin cancer incidence was highest in patients receiving lenalidomide maintenance, particularly in TNE patients, where squamous cell carcinoma and basal cell carcinoma were diagnosed in 5.5% and 2.6% of patients, respectively. The incidence of most solid tumour types was higher in lenalidomide maintenance patients.Mortality due to progressive myeloma was reduced in patients receiving lenalidomide maintenance, noted to be 16.6% compared 22.6% in those observed in TE patients and 32.7% compared to 41.5% in TNE patients. SPM related mortality was low, 1.8% and 6.1% in TE and TNE lenalidomide maintenance patients, respectively, compared to 0.4% and 2.8% in those being observed. Interpretation: This provides reassurance that long-term lenalidomide treatment is safe and associated with improved outcomes in TE and TNE populations, although monitoring for SPM development should be incorporated into clinic review processes. Funding: Primary financial support was from Cancer Research UK [C1298/A10410].
RESUMEN
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Asunto(s)
Antineoplásicos , Benzodiazepinas/química , Inmunoconjugados , Pirroles/química , Receptor ErbB-2/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Trastuzumab , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Células MCF-7 , Ratones Desnudos , Ratas , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Trastuzumab/química , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Despite recent advances in treatment, breast cancer remains the second-most common cause of cancer death among American women. A greater understanding of the molecular characteristics of breast tumors could ultimately lead to improved tumor-targeted treatment options, particularly for subsets of breast cancer patients with unmet needs. Using an unbiased genomics approach to uncover membrane-localized tumor-associated antigens (TAAs), we have identified glial cell line derived neurotrophic factor (GDNF) family receptor α 1 (GFRA1) as a breast cancer TAA. Immunohistochemistry (IHC) revealed that GFRA1 displays a limited normal tissue expression profile coupled with overexpression in specific breast cancer subsets. The cell surface localization as determined by fluorescence-activated cell sorting (FACS) and the rapid internalization kinetics of GFRA1 makes it an ideal target for therapeutic exploitation as an antibody-drug conjugate (ADC). Here, we describe the development of a pyrrolobenzodiazepine (PBD)-armed, GFRA1-targeted ADC that demonstrates cytotoxicity in GFRA1-positive cell lines and patient-derived xenograft (PDX) models. The safety profile of the rat cross-reactive GFRA1-PBD was assessed in a rat toxicology study to find transient cellularity reductions in the bone marrow and peripheral blood, consistent with known off-target effects of PBD ADC's. These studies reveal no evidence of on-target toxicity and support further evaluation of GFRA1-PBD in GFRA1-positive tumors.
RESUMEN
MEDI-570 is a fully human afucosylated monoclonal antibody (MAb) against Inducible T-cell costimulator (ICOS), highly expressed on CD4+ T follicular helper (TFH) cells. Effects of MEDI-570 were evaluated in an enhanced pre-postnatal development toxicity (ePPND) study in cynomolgus monkeys. Administration to pregnant monkeys did not cause any abortifacient effects. Changes in hematology and peripheral blood T lymphocyte subsets in maternal animals and infants and the attenuated infant IgG immune response to keyhole limpet hemocyanin (KLH) were attributed to MEDI-570 pharmacology. Adverse findings included aggressive fibromatosis in one dam and two infant losses in the high dose group with anatomic pathology findings suggestive of atypical lymphoid hyperplasia. The margin of safety relative to the no observed adverse effect level (NOAEL) for the highest planned clinical dose in the Phase 1a study was 7. This study suggests that women of child bearing potential employ effective methods of contraception while being treated with MEDI-570.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Depleción Linfocítica , Linfocitos T/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Embrión de Mamíferos/inmunología , Desarrollo Embrionario/inmunología , Femenino , Desarrollo Fetal/inmunología , Feto/efectos de los fármacos , Hemocianinas/farmacología , Inmunoglobulina G/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Recuento de Linfocitos , Macaca fascicularis , Masculino , Intercambio Materno-Fetal , EmbarazoRESUMEN
Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity.Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure-activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure-tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys).Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC.Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858-68. ©2017 AACR.
Asunto(s)
Benzodiazepinas/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Pirroles/administración & dosificación , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Benzodiazepinas/química , Benzodiazepinas/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Haplorrinos , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Masculino , Ratones , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Pirroles/química , Pirroles/inmunología , Ratas , Índice Terapéutico , Trastuzumab/administración & dosificación , Trastuzumab/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Antibody-drug conjugates (ADCs) are among the most promising empowered biologics for cancer treatment. ADCs are commonly prepared by chemical conjugation of small molecule cytotoxic anti-cancer drugs to antibodies through either lysine side chains or cysteine thiols generated by the reduction of interchain disulfide bonds. Both methods yield heterogeneous conjugates with complex biophysical properties and suboptimal serum stability, efficacy, and pharmacokinetics. To limit the complexity of cysteine-based ADCs, we have engineered and characterized in vitro and in vivo antibody cysteine variants that allow precise control of both site of conjugation and drug load per antibody molecule. We demonstrate that the chemically-defined cysteine-engineered antibody-tubulysin conjugates have improved ex vivo and in vivo stability, efficacy, and pharmacokinetics when compared to conventional cysteine-based ADCs with similar drug-to-antibody ratios. In addition, to limit the non-target FcγRs mediated uptake of the ADCs by cells of the innate immune system, which may result in off-target toxicities, the ADCs have been engineered to lack Fc-receptor binding. The strategies described herein are broadly applicable to any full-length IgG or Fc-based ADC and have been incorporated into an ADC that is in phase I clinical development.