Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 19(9): e1011612, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676873

RESUMEN

The increase in emerging drug resistant Gram-negative bacterial infections is a global concern. In addition, there is growing recognition that compromising the microbiota through the use of broad-spectrum antibiotics can impact long term patient outcomes. Therefore, there is the need to develop new bactericidal strategies to combat Gram-negative infections that would address these specific issues. In this study, we report and characterize one such approach, an antibody-drug conjugate (ADC) that combines (i) targeting the surface of a specific pathogenic organism through a monoclonal antibody with (ii) the high killing activity of an antimicrobial peptide. We focused on a major pathogenic Gram-negative bacterium associated with antibacterial resistance: Pseudomonas aeruginosa. To target this organism, we designed an ADC by fusing an antimicrobial peptide to the C-terminal end of the VH and/or VL-chain of a monoclonal antibody, VSX, that targets the core of P. aeruginosa lipopolysaccharide. This ADC demonstrates appropriately minimal levels of toxicity against mammalian cells, rapidly kills P. aeruginosa strains, and protects mice from P. aeruginosa lung infection when administered therapeutically. Furthermore, we found that the ADC was synergistic with several classes of antibiotics. This approach described in this study might result in a broadly useful strategy for targeting specific pathogenic microorganisms without further augmenting antibiotic resistance.


Asunto(s)
Infecciones Bacterianas , Inmunoconjugados , Animales , Ratones , Pseudomonas aeruginosa , Anticuerpos Monoclonales/farmacología , Antibacterianos/farmacología , Péptidos Antimicrobianos , Mamíferos
2.
BMC Microbiol ; 24(1): 270, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033146

RESUMEN

BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.


Asunto(s)
Biopelículas , Infecciones Relacionadas con Prótesis , Titanio , Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Prótesis/microbiología , Humanos , Adhesión Bacteriana , Propionibacteriaceae/fisiología , Propionibacteriaceae/genética , Propionibacteriaceae/efectos de los fármacos , Prótesis e Implantes/microbiología , Huesos/microbiología , Plásticos , Aleaciones , Propiedades de Superficie
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430871

RESUMEN

Osteoblasts are bone-forming and highly active cells participating in bone homeostasis. In the case of osteomyelitis and more specifically prosthetic joint infections (PJI) for which Staphylococcus aureus (S. aureus) is mainly involved, the interaction between osteoblasts and S. aureus results in impaired bone homeostasis. If, so far, most of the studies of osteoblasts and S. aureus interactions were focused on osteoblast response following direct interactions with co-culture and/or internalization models, less is known about the effect of osteoblast factors on S. aureus biofilm formation. In the present study, we investigated the effect of human osteoblast culture supernatant on methicillin sensitive S. aureus (MSSA) SH1000 and methicillin resistant S. aureus (MRSA) USA300. Firstly, Saos-2 cell line was incubated with either medium containing TNF-α to mimic the inflammatory periprosthetic environment or with regular medium. Biofilm biomass was slightly increased for both strains in the presence of culture supernatant collected from Saos-2 cells, stimulated or not with TNF-α. In such conditions, SH1000 was able to develop microcolonies, suggesting a rearrangement in biofilm organization. However, the biofilm matrix and regulation of genes dedicated to biofilm formation were not substantially changed. Secondly, culture supernatant obtained from primary osteoblast culture induced varied response from SH1000 strain depending on the different donors tested, whereas USA300 was only slightly affected. This suggested that the sensitivity to bone cell secretions is strain dependent. Our results have shown the impact of osteoblast secretions on bacteria and further identification of involved factors will help to manage PJI.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Medios de Cultivo Condicionados/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Biopelículas , Osteoblastos
4.
J Bacteriol ; 199(3)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27849175

RESUMEN

Caseinolytic peptidases (ClpPs) regulate diverse aspects of cellular physiology in bacteria. Some species have multiple ClpPs, including the opportunistic pathogen Pseudomonas aeruginosa, in which there is an archetypical isoform, ClpP1, and a second isoform, ClpP2, about which little is known. Here, we use phenotypic assays to investigate the biological roles of ClpP1 and ClpP2 and biochemical assays to characterize purified ClpP1, ClpP2, ClpX, and ClpA. Interestingly, ClpP1 and ClpP2 have distinct intracellular roles for motility, pigment production, iron scavenging, and biofilm formation. Of particular interest, ClpP2, but not ClpP1, is required for microcolony organization, where multicellular organized structures first form on the pathway to biofilm production. We found that purified ClpP1 with ClpX or ClpA was enzymatically active, yet to our surprise, ClpP2 was inactive and not fully assembled in vitro; attempts to assist ClpP2 assembly and activation by mixing with the other Clp components failed to turn on ClpP2, as did solution conditions that have helped activate other ClpPs in vitro We postulate that the active form of ClpP2 has yet to be discovered, and we present several potential models to explain its activation as well as the unique role ClpP2 plays in the development of the clinically important biofilms in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is responsible for severe infections of immunocompromised patients. Our work demonstrates that two different isoforms of the Clp peptidase, ClpP1 and ClpP2, control distinct aspects of cellular physiology for this organism. In particular, we identify ClpP2 as being necessary for microcolony organization. Pure active forms of ClpP1 and either ClpX or ClpA were characterized as assembled and active, and ClpP2 was incompletely assembled and inactive. By establishing both the unique biological roles of ClpP1 and ClpP2 and their initial biochemical assemblies, we have set the stage for important future work on the structure, function, and biological targets of Clp proteolytic enzymes in this important opportunistic pathogen.

5.
J Biol Chem ; 291(4): 1676-1691, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26589798

RESUMEN

The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed "ruler" protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a "ball-and-chain" architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein's N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Flagelos/química , Flagelos/genética , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética
6.
PLoS Pathog ; 10(5): e1004152, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24852171

RESUMEN

Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Estrés Fisiológico/efectos de los fármacos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/crecimiento & desarrollo , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Ligasas/genética , Ligasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo
7.
Antimicrob Agents Chemother ; 58(9): 5363-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24982074

RESUMEN

Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 µg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Péptidos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos
8.
Antimicrob Agents Chemother ; 57(10): 4877-81, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877682

RESUMEN

The ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility in Pseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of the nirS gene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, a nirS transposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of a nirS mutant to form biofilms.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Óxido Nítrico/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo
9.
Microbiology (Reading) ; 159(Pt 10): 2153-2161, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23955430

RESUMEN

CspR has been characterized recently as a cold-shock RNA-binding protein in Enterococcus faecalis, a natural member of the gastro-intestinal tract capable of switching from a commensal relationship with the host to an important nosocomial pathogen. In addition to its involvement in the cold-shock response, CspR also plays a role in the long-term survival and virulence of E. faecalis. In the present study, we demonstrated that anti-CspR immune rabbit serum protected larvae of Galleria mellonella against a lethal challenge of the WT strain. These results suggested that CspR might have a surface location. This hypothesis was verified by Western blot that showed detection of CspR in the total as well as in the surface protein fraction. In addition, identification of surface polypeptides by proteolytic shaving of intact bacterial cells followed by liquid chromatography-MS-MS revealed that cold-shock proteins (EF1367, EF2939 and CspR) were present on the cell surface. Lastly, anti-CspR immune rabbit serum was used for immunolabelling and detected with colloidal gold-labelled goat anti-rabbit IgG in order to determine the immunolocalization of CspR on E. faecalis WT strain. Electron microscopy images confirmed that the cold-shock protein RNA-binding protein CspR was present in both cytoplasmic and surface parts of the cell. These data strongly suggest that CspR, in addition to being located intracellularly, is also present in the extracellular protein fraction of the cells and has important functions in the infection process of Galleria larvae.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/análisis , Enterococcus faecalis/química , Proteínas de la Membrana/análisis , Proteínas de Unión al ARN/análisis , Animales , Western Blotting , Cromatografía Liquida , Inmunohistoquímica , Lepidópteros/microbiología , Microscopía Inmunoelectrónica , Espectrometría de Masas en Tándem
10.
Biofilm ; 5: 100120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37125394

RESUMEN

The major role and implication of bacterial biofilms in the case of bone and prosthesis infections have been highlighted and often linked to implant colonization. Management strategies of these difficult-to-treat infections consist in surgeries and antibiotic treatment, but the rate of relapse remains high, especially if Staphylococcus aureus, a high-virulent pathogen, is involved. Therapeutic approaches are not adapted to the specific features of biofilm in bone context whereas infectious environment is known to importantly influence biofilm structure. In the present study, we aim to characterize S. aureus SH1000 (methicillin-sensitive strain, MSSA) and USA300 (methicillin-resistant strain, MRSA) biofilm on different surfaces mimicking the periprosthetic environment. As expected, protein adsorption on titanium enhanced the number of adherent bacteria for both strains. On bone explant, USA300 adhered more than SH1000. The simultaneous presence of two different surfaces was also found to change the bacterial behaviour. Thus, proteins adsorption on titanium and bone samples (from bank or directly recovered after an arthroplasty) were found to be key parameters that influence S. aureus biofilm formation: adhesion, matrix production and biofilm-related gene regulation. These results highlighted the need for new biofilm models, more relevant with the infectious environment by using adapted culture medium and presence of surfaces that are representative of in situ conditions to better evaluate therapeutic strategies against biofilm.

11.
Pathogens ; 12(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36986306

RESUMEN

Infections, which interfere with bone regeneration, may be a critical issue to consider during the development of biomimetic material. Calcium phosphate (CaP) and type I collagen substrates, both suitable for bone-regeneration dedicated scaffolds, may favor bacterial adhesion. Staphylococcus aureus possesses adhesins that allow binding to CaP or collagen. After their adhesion, bacteria may develop structures highly tolerant to immune system attacks or antibiotic treatments: the biofilms. Thus, the choice of material used for scaffolds intended for bone sites is essential to provide devices with the ability to prevent bone and joint infections by limiting bacterial adhesion. In this study, we compared the adhesion of three different S. aureus strains (CIP 53.154, SH1000, and USA300) on collagen- and CaP-coating. Our objective was to evaluate the capacity of bacteria to adhere to these different bone-mimicking coated supports to better control the risk of infection. The three strains were able to adhere to CaP and collagen. The visible matrix components were more important on CaP- than on collagen-coating. However, this difference was not reflected in biofilm gene expression for which no change was observed between the two tested surfaces. Another objective was to evaluate these bone-mimicking coatings for the development of an in vitro model. Thus, CaP, collagen-coatings, and the titanium-mimicking prosthesis were simultaneously tested in the same bacterial culture. No significant differences were found compared to adhesion on surfaces independently tested. In conclusion, these coatings used as bone substitutes can easily be colonized by bacteria, especially CaP-coating, and must be used with an addition of antimicrobial molecules or strategies to avoid bacterial biofilm development.

12.
Infect Immun ; 80(5): 1728-35, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22331431

RESUMEN

Peptidylprolyl cis/trans isomerases (PPIases) are enzymes involved in protein folding. Analysis of the genome sequence of Enterococcus faecalis V583 allowed for identification of 3 PPIases carrying genes. ef2898 encodes an intracellular PPIase which was not shown to be important for the E. faecalis stress response or virulence. The other two PPIases, the parvulin family rotamase EF0685 and the cyclophilin family member EF1534, are expected to be surface-exposed proteins. They were shown to be important for virulence and resistance to NaCl. A Δef0685 Δef1534 mutant was also more resistant to oxidative stress, was able to grow under a high manganese concentration, and showed altered resistance to ampicillin and quinolone antibiotics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Isomerasa de Peptidilprolil/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/patogenicidad , Femenino , Prueba de Complementación Genética , Infecciones por Bacterias Grampositivas/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutación , Isomerasa de Peptidilprolil/clasificación , Isomerasa de Peptidilprolil/genética , Virulencia
13.
Microbiology (Reading) ; 158(Pt 3): 816-825, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22135097

RESUMEN

Enterococcus faecalis is an opportunistic pathogen responsible for nosocomial infections. Lipoproteins in Gram-positive bacteria are translocated across the plasma membrane and anchored by the fatty acid group. They perform critical roles, with some described as virulence determinants. The aim of this study was to explore the roles of E. faecalis lipoproteins in the stress response and virulence. We constructed a mutant affected in the predicted prolipoprotein diacylglyceryl transferase gene lgt, and examined the role of Lgt in membrane anchoring, growth, the stress response and virulence. Inactivation of lgt enhanced growth in a high concentration of Mn(2+) or under oxidative stress in vitro, and significantly decreased virulence.


Asunto(s)
Enterococcus faecalis/enzimología , Enterococcus faecalis/patogenicidad , Transferasas/metabolismo , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Eliminación de Gen , Prueba de Complementación Genética , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/mortalidad , Larva/microbiología , Lepidópteros , Manganeso/metabolismo , Análisis de Supervivencia , Transferasas/genética , Virulencia , Factores de Virulencia/genética
14.
Antibiotics (Basel) ; 11(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35740122

RESUMEN

Bacteria within biofilms may be exposed to sub-minimum inhibitory concentrations (sub-MICs) of antibiotics. Cell-to-cell contact within biofilms facilitates horizontal gene transfers and favors induction of the SOS response. Altogether, it participates in the emergence of antibiotic resistance. Aminoglycosides at sub-MICs can induce the SOS response through NO accumulation in E. coli carrying the small plasmid with the quinolone resistance qnrD gene (pDIJ09-518a). In this study, we show that in E. coli pDIJ09-518a, the SOS response triggered by sub-MICs of aminoglycosides has important consequences, promoting genetic rearrangement in class 1 integrons and biofilm formation. We found that the integrase expression was increased in E. coli carrying pDIJ09-518a in the presence of tobramycin, which was not observed for the WT isogenic strain that did not carry the qnrD-plasmid. Moreover, we showed that biofilm production was significantly increased in E. coli WT/pDIJ09-518a compared to the WT strain. However, such a higher production was decreased when the Hmp-NO detoxification pathway was fully functional by overexpressing Hmp. Our results showing that a qnrD-plasmid can promote biofilm formation in E. coli and potentiate the acquisition and spread of resistance determinants for other antibiotics complicate the attempts to counteract antibiotic resistance and prevention of biofilm development even further. We anticipate that our findings emphasize the complex challenges that will impact the decisions about antibiotic stewardship, and other decisions related to retaining antibiotics as effective drugs and the development of new drugs.

15.
Infect Immun ; 79(7): 2638-45, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21536798

RESUMEN

Phylogenetic analysis of the crystal structure of the Enterococcus faecalis SlyA (EF_3002) transcriptional factor places it between the SlyA and MarR regulator subfamilies. Proteins of these families are often involved in the regulation of genes important for bacterial virulence and stress response. To gather evidence for the role of this putative regulator in E. faecalis biology, we dissected the genetic organization of the slyA-EF_3001 locus and constructed a slyA deletion mutant as well as complemented strains. Interestingly, compared to the wild-type parent, the ΔslyA mutant is more virulent in an insect infection model (Galleria mellonella), exhibits increased persistence in mouse kidneys and liver, and survives better inside peritoneal macrophages. In order to identify a possible SlyA regulon, global microarray transcriptional analysis was performed. This study revealed that the slyA-EF_3001 locus appears to be autoregulated and that 117 genes were differentially regulated in the ΔslyA mutant. In the mutant strain, 111 were underexpressed and 6 overexpressed, indicating that SlyA functions mainly as an activator of transcription.


Asunto(s)
Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidad , Factores de Transcripción/genética , Transcripción Genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Bases , Enterococcus faecalis/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Larva/microbiología , Análisis por Micromatrices , Mariposas Nocturnas/microbiología , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Factores de Transcripción/fisiología
16.
Microbiology (Reading) ; 157(Pt 11): 3001-3013, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21903750

RESUMEN

Enterococcus faecalis is a ubiquitous bacterium that is capable of surviving in a broad range of natural environments, including the human host, as either a natural commensal or an opportunistic pathogen involved in severe hospital-acquired infections. How such opportunistic pathogens cause fatal infections is largely unknown but it is likely that they are equipped with sophisticated systems to perceive external signals and interact with eukaryotic cells. Accordingly, being partially exposed at the cell exterior, some surface-associated proteins are involved in several steps of the infection process. Among them are lipoproteins, representing about 25 % of the surface-associated proteins, which could play a major role in bacterial virulence processes. This review focuses on the identification of 90 lipoprotein-encoding genes in the genome of the E. faecalis V583 clinical strain and their putative roles, and provides a transcriptional comparison of microarray data performed in environmental conditions including blood and urine. Taken together, these data suggest a potential involvement of lipoproteins in E. faecalis virulence, making them serious candidates for vaccine production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/patogenicidad , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Biología Computacional , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Lipoproteínas/genética , Proteínas de la Membrana/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoma/análisis , Virulencia
17.
Microorganisms ; 9(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34683356

RESUMEN

The study of biofilms in vitro is complex and often limited by technical problems due to simplified models. Here, we compared C. acnes biofilm formation, from species involved in bone and prosthesis infection, in a static model with a dynamic model. Using similar parameters, the percentage of live bacteria within the biofilm was higher in dynamic than in static approach. In both models, bacterial internalization in osteoblast-like cells, playing the role of stress factor, affected this proportion but in opposite ways: increase of live bacteria proportion in the static model (×2.04 ± 0.53) and of dead bacteria proportion (×3.5 ± 1.03) in the dynamic model. This work highlights the huge importance in the selection of a relevant biofilm model in accordance with the environmental or clinical context to effectively improve the understanding of biofilms and the development of better antibiofilm strategies.

18.
Antibiotics (Basel) ; 10(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34680786

RESUMEN

Antibiotic treatments can participate in the formation of bacterial biofilm in case of under dosage. The interest of indoloquinoline scaffold for drug discovery incited us to study the preparation of new indolo [2,3-b]quinoline derivatives by a domino radical process. We tested the effect of two different "indoloquinoline" molecules (Indol-1 and Indol-2) without antimicrobial activity, in addition to ciprofloxacin, on biofilm formation thanks to crystal violet staining and enumeration of adhered bacteria. This association of ciprofloxacin and Indol-1 or Indol-2 attenuated the formation of biofilm up to almost 80% compared to ciprofloxacin alone, or even prevented the presence of adhered bacteria. In conclusion, these data prove that the association of non-antimicrobial molecules with an antibiotic can be a solution to fight against biofilm and antibiotic resistance emergence.

19.
Front Microbiol ; 12: 714994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557170

RESUMEN

Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium. Each strain presented different biofilm biomass and live adherent cells proportion, or matrix production and composition. However, the three strains shared common responses in a bone-like environment: a similar production of extracellular DNA and engagement of the SOS response. This study is a step toward a better understanding of periprosthetic joint infections and highlights targets, which could be common among S. aureus strains and for future antibiofilm strategies.

20.
FEMS Microbiol Lett ; 368(4)2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33580963

RESUMEN

Staphylococcus aureus and Cutibacterium acnes are involved in several tissue infections and can encounter mesenchymal stem cells (MSCs) during their role in tissue regenerative process. C. acnes and S. aureus internalization by three types of MSCs derived from bone marrow, dental pulp and Wharton's jelly; and bacterial biofilm production were compared. Internalization rates ranged between 1.7-6.3% and 0.8-2.7% for C. acnes and S. aureus, respectively. While C. acnes strains exhibited limited cytotoxic effect on MSCs, S. aureus were more virulent with marked effect starting after only 3 h of interaction. Both bacteria were able to produce biofilms with respectively aggregated and monolayered structures for C. acnes and S. aureus. The increase in C. acnes capacity to develop biofilm following MSCs' internalization was not linked to the significant increase in number of live bacteria, except for bone marrow-MSCs/C. acnes CIP 53.117 with 79% live bacteria compared to the 36% before internalization. On the other hand, internalization of S. aureus had no impact on its ability to form biofilms composed mainly of living bacteria. The present study underlined the complexity of MSCs-bacteria cross-interaction and brought insights into understanding the MSCs behavior in response to bacterial infection in tissue regeneration context.


Asunto(s)
Células Madre Mesenquimatosas/microbiología , Propionibacterium acnes/fisiología , Staphylococcus aureus/fisiología , Biopelículas/crecimiento & desarrollo , Supervivencia Celular , Citoplasma/microbiología , Interacciones Huésped-Patógeno , Humanos , Infecciones Relacionadas con Prótesis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA