Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477953

RESUMEN

Amyloid aggregation of human ataxin-3 (ATX3) is responsible for spinocerebellar ataxia type 3, which belongs to the class of polyglutamine neurodegenerative disorders. It is widely accepted that the formation of toxic oligomeric species is primarily involved in the onset of the disease. For this reason, to understand the mechanisms underlying toxicity, we expressed both a physiological (ATX3-Q24) and a pathological ATX3 variant (ATX3-Q55) in a simplified cellular model, Escherichia coli. It has been observed that ATX3-Q55 expression induces a higher reduction of the cell growth compared to ATX3-Q24, due to the bacteriostatic effect of the toxic oligomeric species. Furthermore, the Fourier transform infrared microspectroscopy investigation, supported by multivariate analysis, made it possible to monitor protein aggregation and the induced cell perturbations in intact cells. In particular, it has been found that the toxic oligomeric species associated with the expression of ATX3-Q55 are responsible for the main spectral changes, ascribable mainly to the cell envelope modifications. A structural alteration of the membrane detected through electron microscopy analysis in the strain expressing the pathological form supports the spectroscopic results.


Asunto(s)
Amiloide/genética , Proteínas Amiloidogénicas/genética , Ataxina-3/genética , Enfermedad de Machado-Joseph/genética , Membrana Celular/genética , Proliferación Celular/genética , Escherichia coli/genética , Regulación de la Expresión Génica/genética , Humanos , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología
2.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042316

RESUMEN

The protein ataxin-3 contains a polyglutamine stretch that triggers amyloid aggregation when it is expanded beyond a critical threshold. This results in the onset of the spinocerebellar ataxia type 3. The protein consists of the globular N-terminal Josephin domain and a disordered C-terminal tail where the polyglutamine stretch is located. Expanded ataxin-3 aggregates via a two-stage mechanism: first, Josephin domain self-association, then polyQ fibrillation. This highlights the intrinsic amyloidogenic potential of Josephin domain. Therefore, much effort has been put into investigating its aggregation mechanism(s). A key issue regards the conformational requirements for triggering amyloid aggregation, as it is believed that, generally, misfolding should precede aggregation. Here, we have assayed the effect of 2,2,2-trifluoroethanol, a co-solvent capable of stabilizing secondary structures, especially α-helices. By combining biophysical methods and molecular dynamics, we demonstrated that both secondary and tertiary JD structures are virtually unchanged in the presence of up to 5% 2,2,2-trifluoroethanol. Despite the preservation of JD structure, 1% of 2,2,2-trifluoroethanol suffices to exacerbate the intrinsic aggregation propensity of this domain, by slightly decreasing its conformational stability. These results indicate that in the case of JD, conformational fluctuations might suffice to promote a transition towards an aggregated state without the need for extensive unfolding, and highlights the important role played by the environment on the aggregation of this globular domain.


Asunto(s)
Amiloide/efectos de los fármacos , Ataxina-3/metabolismo , Agregado de Proteínas/efectos de los fármacos , Proteínas Represoras/metabolismo , Trifluoroetanol/farmacología , Ataxina-3/química , Dicroismo Circular , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Péptidos/metabolismo , Conformación Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Proteínas Represoras/química
3.
Biochim Biophys Acta ; 1830(11): 5236-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23891935

RESUMEN

BACKGROUND: Intrinsically disordered proteins (IDPs) are an emerging part of structural biology that has challenged the classic paradigm of structure-function relationship. Indeed, IDPs have been associated with different physiological functions and associated with several pathologies, such as polyglutamine (polyQ) related diseases. Ataxin-3 (AT3) is the smallest polyQ protein, composed by the N-terminal folded Josephin domain (JD), which is amyloidogenic on its own, and a C-terminal unstructured part. The disordered region between the polyQ and the JD, AT3182-291 plays a key role in the development of the disease. METHODS: We integrated different biophysical experimental techniques, atomistic explicit-solvent molecular dynamics (MD) simulations and graph theory to study AT3182-291 structure. RESULTS: AT3182-291 is a monomeric intrinsically disordered (ID) domain in solution and it is characterized by different conformational states, ascribable to pre-molten globule populations with different degrees of compactness. If isolated, it decreases the aggregation of the entire AT3. CONCLUSIONS: We provided the first structural description of an ID domain associated to a polyQ protein and we also showed that it exerts protective effects against AT3 aggregation. This effect is likely to be induced by intermolecular interactions between AT3 and the ubiquitin-interacting motifs of AT3182-291. Electrostatic interactions play a pivotal role in regulating the topology and tertiary propensity of the fragment and hub residues have been identified. GENERAL SIGNIFICANCE: Synergistic use of atomistic simulations and biophysical techniques should be more generally applied to the study of IDPs. Since ID domains and polyQ-proteins are intimately connected, the study here provided can be of interest for other members of the group.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Fragmentos de Péptidos/química , Proteínas Represoras/química , Modelos Moleculares , Péptidos/química , Pliegue de Proteína , Estructura Terciaria de Proteína
4.
Biochim Biophys Acta ; 1833(12): 3155-3165, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035922

RESUMEN

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


Asunto(s)
Amiloide/toxicidad , Calcio/metabolismo , Cerebelo/citología , Espacio Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Animales , Apoptosis/efectos de los fármacos , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Gangliósido G(M1)/farmacología , Microscopía de Fuerza Atómica , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo
5.
Chemistry ; 20(42): 13793-800, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25179684

RESUMEN

By combining NMR spectroscopy, transmission electron microscopy, and circular dichroism we have identified the structural determinants involved in the interaction of green tea catechins with Aß1-42, PrP106-126, and ataxin-3 oligomers. The data allow the elucidation of their mechanism of action, showing that the flavan-3-ol unit of catechins is essential for interaction. At the same time, the gallate moiety, when present, seems to increase the affinity for the target proteins. These results provide important information for the rational design of new compounds with anti-amyloidogenic activity and/or molecular tools for the specific targeting of amyloid aggregates in vivo.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Catequina/farmacología , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Priones/metabolismo , Agregación Patológica de Proteínas/prevención & control , Proteínas Represoras/metabolismo , Té/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Ataxina-3 , Productos Biológicos/química , Productos Biológicos/farmacología , Catequina/química , Flavonoides/química , Flavonoides/farmacología , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Enfermedades Neurodegenerativas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Fragmentos de Péptidos/química , Priones/química , Agregación Patológica de Proteínas/metabolismo , Proteínas Represoras/química
6.
ACS Chem Neurosci ; 15(2): 278-289, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38154144

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloide/metabolismo , Caenorhabditis elegans , Polifenoles/uso terapéutico , Extractos Vegetales/farmacología
7.
Protein Sci ; 32(7): e4687, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243950

RESUMEN

The HspB8-BAG3 complex plays an important role in the protein quality control acting alone or within multi-components complexes. To clarify the mechanism underlying its activity, in this work we used biochemical and biophysical approaches to study the tendency of both proteins to auto-assemble and to form the complex. Solubility and Thioflavin T assays, Fourier transform infrared spectroscopy and atomic force microscopy analyses clearly showed the tendency of HspB8 to self-assemble at high concentration and to form oligomers in a "native-like" conformation; otherwise, BAG3 aggregates poorly. Noteworthy, also HspB8 and BAG3 associate in a "native-like" conformation, forming a stable complex. Furthermore, the high difference between dissociation constant values of HspB8-HspB8 interaction with respect to the binding to BAG3 obtained by surface plasmon resonance confirms that HspB8 is an obligated partner of BAG3 in vivo. Lastly, both proteins alone or in the complex are able to bind and affect the aggregation of the Josephin domain, the structured domain that triggers the ataxin-3 fibrillation. In particular, the complex displayed higher activity than HspB8 alone. All this considered, we can assert that the two proteins form a stable assembly with chaperone-like activity that could contribute to the physiological role of the complex in vivo.


Asunto(s)
Proteínas de Choque Térmico , Proteínas Serina-Treonina Quinasas , Proteínas Adaptadoras Transductoras de Señales/química , Autofagia , Proteínas de Choque Térmico/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Humanos , Animales
8.
Biotechnol Biofuels Bioprod ; 16(1): 30, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823649

RESUMEN

BACKGROUND: Escherichia coli cells are the most frequently used hosts in recombinant protein production processes and mainly require molecules such as IPTG or pure lactose as inducers of heterologous expression. A possible way to reduce the production costs is to replace traditional inducers with waste materials such as cheese whey permeate (CWP). CWP is a secondary by-product generated from the production of the valuable whey proteins, which are obtained from ultrafiltration of cheese whey, a main by-product of the dairy industry, which is rich in lactose. RESULTS: The effects of CWP collected from an Italian plant were compared with those of traditional inducers on the production of two model proteins (i.e., green fluorescent protein and the toxic Q55 variant of ataxin-3), in E. coli BL21 (DE3) cells. It was found that the high lactose content of CWP (165 g/L) and the antioxidant properties of its micronutrients (vitamins, cofactors and osmolytes) sustain production yields similar to those obtained with traditional inducers, accompanied by the improvement of cell fitness. CONCLUSIONS: CWP has proven to be an effective and low-cost alternative inducer to produce recombinant proteins. Its use thus combines the advantage of exploiting a waste product with that of reducing the production costs of recombinant proteins.

9.
Nat Prod Res ; 36(8): 2140-2144, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33118389

RESUMEN

This study is aimed at valorizing artichoke (Cynara cardunculus var. scolymus L.) by-products as source of inulin, a fiber showing relevant prebiotic properties, through the realization of a waste value chain. Starting from artichoke by-products, the inulin fraction was assessed both in terms of total amount and degree of polymerization as a function of the harvest season and storage conditions. These parameters have been found significant at influencing inulin yield of extraction. For the first time, artichoke wastes were proposed to be exploited taking into account the optimal conditions to preserve their high-added chemical value. Our data suggest that Italian farms could obtain from their wastes a total amount of 16 t/year of inulin with an average polymerization degree higher than 40 and would allow the development of a circular economy process within the artichoke supply chain, by exploiting its wastes representing 70% of the total artichoke biomass.


Asunto(s)
Cynara scolymus , Cynara , Scolymus , Cynara scolymus/química , Inulina/química , Polimerizacion , Prebióticos
10.
Neurotoxicology ; 84: 125-135, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774064

RESUMEN

Cadmium (Cd) is a widespread toxic environmental contaminant, released by anthropogenic activities. It interferes with essential metal ions homeostasis and affects protein structures and functions by substituting zinc, copper and iron. In this study, the effect of cadmium on SOD1, a CuZn metalloenzyme catalyzing superoxide conversion into hydrogen peroxide, has been investigated in three different biological models. We first evaluated the effects of cadmium combined with copper and/or zinc on the recombinant GST-SOD1, expressed in E. coli BL21. The enzyme activity and expression were investigated in the presence of fixed copper and/or zinc doses with different cadmium concentrations, in the cellular medium. Cadmium caused a dose-dependent reduction in SOD1 activity, while the expression remains constant. Similar results were obtained in the cellular model represented by the human SH-SY5Y neuronal cell line. After cadmium treatment for 24 and 48 h, SOD1 enzymatic activity decreased in a dose- and time-dependent way, while the protein expression remained constant. Finally, a 16 h cadmium treatment caused a 25 % reduction of CuZn-SOD activity without affecting the protein expression in the Caenorhabditis elegans model. Taken together our results show an inhibitory effect of cadmium on SOD1 enzymatic activity, without affecting the protein expression, in all the biological models used, suggesting that cadmium can displace zinc from the enzyme catalytic site.


Asunto(s)
Cadmio/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Superóxido Dismutasa-1/antagonistas & inhibidores , Animales , Caenorhabditis elegans/enzimología , Línea Celular Tumoral , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Escherichia coli/enzimología , Humanos , Superóxido Dismutasa-1/biosíntesis
11.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208275

RESUMEN

Assessing the toxic effect in living organisms remains a major issue for the development of safe nanomedicines and exposure of researchers involved in the synthesis, handling and manipulation of nanoparticles. In this study, we demonstrate that Caenorhabditis elegans could represent an in vivo model alternative to superior mammalians for the collection of several physiological functionality parameters associated to both short-term and long-term effects of colloidally stable nanoparticles even in absence of microbial feeding, usually reported to be necessary to ensure appropriate intake. Contextually, we investigated the impact of surface charge on toxicity of superparamagnetic iron oxide coated with a wrapping polymeric envelop that confers them optimal colloidal stability. By finely tuning the functional group composition of this shallow polymer-obtaining totally anionic, partially pegylated, partially anionic and partially cationic, respectively-we showed that the ideal surface charge organization to optimize safety of colloidal nanoparticles is the one containing both cationic and anionic groups. Our results are in accordance with previous evidence that zwitterionic nanoparticles allow long circulation, favorable distribution in the tumor area and optimal tumor penetration and thus support the hypothesis that zwitterionic iron oxide nanoparticles could be an excellent solution for diagnostic imaging and therapeutic applications in nanooncology.

12.
Food Funct ; 11(7): 5853-5865, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589172

RESUMEN

Colorectal cancer (CRC) is one of the most common types of cancer, especially in Western countries, and its incidence rate is increasing every year. In this study, for the first time Vigna unguiculata L. Walp. (cowpea) water boiled seed extracts were found to reduce the viability of different colorectal cancer (CRC) cell lines, such as E705, DiFi and SW480 and the proliferation of Caco-2 line too, without affecting CCD841 healthy cell line. Furthermore, the extracts showed the ability to reduce the level of Epidermal Growth Factor Receptor (EGFR) phosphorylation in E705, DiFi and SW480 cell lines and to lower the EC50 of a CRC common drug, cetuximab, on E705 and DiFi lines from 161.7 ng mL-1 to 0.06 ng mL-1 and from 49.5 ng mL-1 to 0.2 ng mL-1 respectively. The extract was characterized in its protein and metabolite profiles by tandem mass spectrometry and 1H-NMR analyses. A Bowman-Birk protease inhibitor was identified within the protein fraction and was supposed to be the main active component. These findings confirm the importance of a legume-based diet to prevent the outbreak of many CRC and to reduce the amount of drug administered during a therapeutic cycle.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Semillas/química , Vigna/química , Antineoplásicos Fitogénicos/farmacología , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular , Cetuximab , Neoplasias Colorrectales/prevención & control , Receptores ErbB/metabolismo , Humanos , Fosforilación , Extractos Vegetales/farmacología , Proteínas de Plantas/farmacología , Proteínas de Plantas/uso terapéutico , Inhibidores de Proteasas/farmacología
13.
J Biol Inorg Chem ; 14(8): 1175-85, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19575245

RESUMEN

The mode of interaction of ataxin-3 Q36 (AT-3 Q36) with selected endogenous and exogenous metal ions, namely, Zn(2+), Cu(2+), Ni(2+), and Cd(2+), was examined. Metal-ion-induced structural changes of the protein were monitored by fluorescence as well as Fourier transform Raman spectroscopy. We found that the cations tested lead to a decrease in alpha-helical content and a concurrent increase in beta-sheet as well as undefined (beta-turn and random-coil) structures. The most evident effect was observed for copper and nickel cations. After titration with these cations, the AT3 Q36 secondary structure content (27% alpha-helices in the presence of either ion, 31 and 27% beta-sheets for Cu(2+) and Ni(2+), respectively) was similar to that observed for the aggregated form of the protein (27% alpha-helices, 36% beta-sheets). Using the 1-anilinonaphthalene-8-sulfonate hydrophobic fluorescence probe, we showed that the presence of the metal ions tested led to the formation of solvent-exposed hydrophobic patches of AT-3 Q36, and that such an effect decreased with increasing ionic radius.


Asunto(s)
Cationes Bivalentes/química , Metales/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Isoformas de Proteínas/química , Estructura Secundaria de Proteína , Proteínas Represoras/química , Naftalenosulfonatos de Anilina/química , Animales , Apoproteínas/química , Ataxina-3 , Colorantes Fluorescentes/química , Caballos , Humanos , Mioglobina/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Espectrometría de Fluorescencia
14.
Biomed Res Int ; 2019: 1083952, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31662964

RESUMEN

Globe artichoke is an intriguing source of indigestible sugar polymers such as inulin-type fructans. In this study, the effect of ultrasound in combination with ethanol precipitation to enhance the extraction of long chain fructans from artichoke wastes has been evaluated. The inulin-type fructans content both from bracts and stems was measured using an enzymatic fructanase-based assay, while its average degree of polymerization (DP) was determined by HPLC-RID analysis. Results show that this method provides artichoke extracts with an inulin-type fructans content of 70% with an average DP between 32 and 42 both in bracts and in stems. The prebiotic effect of long chain inulins from artichoke extract wastes was demonstrated by its ability to support the growth of five Lactobacillus and four Bifidobacterium species, previously characterized as probiotics. Besides, we considered the possibility to industrialize the process developing a simpler method for the production of inulin-type fructans from the artichoke wastes so that the artichoke inulin preparation could be suitable for its use in synbiotic formulations in combination with different probiotics for further studies including in vivo trials.


Asunto(s)
Cynara scolymus/química , Fructanos/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Inulina/aislamiento & purificación , Extractos Vegetales/farmacología , Bifidobacterium/efectos de los fármacos , Bifidobacterium/crecimiento & desarrollo , Glicósido Hidrolasas , Hidroxibenzoatos/aislamiento & purificación , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Extractos Vegetales/química , Polimerizacion , Prebióticos , Proteínas/análisis , Ondas Ultrasónicas
15.
Biochim Biophys Acta Gen Subj ; 1863(2): 279-290, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30420336

RESUMEN

BACKGROUND: We have previously demonstrated the neuroprotective activity of tetracycline on a Spinocerebellar Ataxia 3 nematode model. Here, we present the screening of a small library of tetracycline congeners in order to identify the most effective compound in preventing ataxin-3 aggregation. METHODS: We performed the assays on the Josephin Domain as it is directly involved in the onset of fibrillation. We used thioflavin T and solubility assays to spot out the most effective tetracycline congeners; Fourier transform infrared and NMR spectroscopies to characterize their mode of action. We employed an ataxic Caenorhabditis elegans model to evaluate the pharmacological efficacy of tetracycline congeners. RESULTS: Methacycline was identified as the most effective compound. Like tetracycline, methacycline neither significantly affected the aggregation kinetics nor did it change the secondary structures of the final aggregates but increased the solubility of the aggregated species. Saturation transfer NMR experiments demonstrated methacycline capability to only bind the oligomeric species of Josephin Domain. Competition assays also showed that methacycline binds to the Josephin Domain more tightly than tetracycline. The treatment with methacycline induced a significant improvement in motility and locomotion of the transgenic C. elegans without changing its lifespan. The efficacy was distinctly stronger than that of tetracycline. Noteworthy, unlike tetracycline, methacycline was able to retard aging-related decline in motility of even the healthy worms used. CONCLUSIONS: The apparent absence of toxic effects displayed by methacycline, along with its stronger efficacy in contrasting expanded ataxin-3 toxicity, makes it a possible candidate for a chronic treatment of the disease.


Asunto(s)
Antibacterianos/farmacología , Ataxina-3/antagonistas & inhibidores , Caenorhabditis elegans/efectos de los fármacos , Metaciclina/farmacología , Modelos Biológicos , Animales , Ataxina-3/metabolismo , Caenorhabditis elegans/metabolismo , Cinética , Agregado de Proteínas/efectos de los fármacos , Estructura Secundaria de Proteína
17.
Biochim Biophys Acta ; 1769(3): 194-203, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17337072

RESUMEN

PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (DeltaKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the DeltaKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-DeltaKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Deltapnp mutation at 18 degrees C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.


Asunto(s)
Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Bacteriano/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Homeostasis , Datos de Secuencia Molecular , Mutación/genética , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , ARN Mensajero/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Temperatura
18.
Talanta ; 178: 955-961, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136923

RESUMEN

A novel surface plasmon resonance (SPR) optical fiber biosensor, able to bind perfluorooctanoate and perfluorooctanesulfonate compounds, is presented. In the first step, an ad hoc antibody compound has been designed, produced and tested by ELISA, then, in the second step, the gold surface of a plastic optical fiber sensor has been derivatizated and functionalized with this new bio-receptor, able to bind target analytes with high affinity and selectivity. The experimental data have shown that the developed SPR optical fiber biosensor makes it possible to detect these compounds. One advantage of this approach stems from the possibility to monitor the perfluorinated compounds in the environment exploiting the remote sensing capability offered by the optical fibers. The measurements were performed in laboratory, also exploiting matrices mimicking the real environment. The limit of detection of the assay was 0.21ppb, a value that is lower than the maximum residue limit fixed by the European Union regulations.

19.
Sci Rep ; 8(1): 4285, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511294

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
Food Res Int ; 112: 129-135, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30131119

RESUMEN

Coffee is the second traded food commodity in the world. Beyond roasted seeds, the most part of the original fruit -and in particular pulp- is discarded as waste, with severe environmental and economic consequences in many developing countries. Our research focused on developing an eco-friendly extraction protocol of phytocomplexes from coffee pulp and evaluating their bioactivity and beneficial effects to human health as food supplements. Antioxidant activity assays (Folin-Ciocalteu and DPPH assays) were adopted to select the most effective extraction technique and results show antioxidant activity of coffee pulp extracts. After analysis of cytotoxicity on human epithelial gastric cells, measurements of IL-8 release of treated or pre-treated cells were performed. Results showed that the use of soft technical equipment and sustainable solvents (i.e. maceration process, aqueous extraction) can extract phytocomplexes with antioxidant properties. Moreover, IL-8 measurements showed impairment of this chemokine release at concentrations that may be reached in vivo in the gastrointestinal tract, following consumption of reasonable amount of extract. Pre-treatments analysis demonstrated the ability of coffee pulp extracts to prevent IL-8 release by gastric epithelial cells. Chemical evaluation performed by liquid chromatography mass spectrometry showed that quinic acid derivatives are abundant in coffee pulp extract together with procyanidins derivatives: those compounds might be responsible for the high biological activity. This evidence supports future applications of coffee pulp extracts as food supplement with high added value, starting from a waste that can be valorized through simple yet efficient extraction methods.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Café/química , Suplementos Dietéticos , Manipulación de Alimentos/métodos , Mucosa Gástrica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-8/metabolismo , Extractos Vegetales/farmacología , Semillas/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/toxicidad , Antioxidantes/aislamiento & purificación , Antioxidantes/toxicidad , Línea Celular , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Humanos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA