RESUMEN
Octacalcium phosphate (OCP; Ca8(HPO4)2(PO4)4. 5H2O) is a plausible precursor phase of biological hydroxyapatite, which composites with a number of biologically relevant organic metabolites. Widely used material science physicochemical structure determination techniques successfully characterize the mineral component of these composites but leave details of the structure, and interactions with mineral, of the organic component almost completely obscure. The metabolic linear di-acids succinate (SUC) and adipate (ADI) differentially expand the hydrated (100) layer of OCP. 13C13C correlation (proton driven spin diffusion, PDSD) experiments on OCP composited with (U-13C4)-SUC, and (U13C6)-ADI, show that the two di-acids per unit cell adopt non-centrosymmetric but mutually identical structures. 13C{31P}, rotational echo double resonance (REDOR) shows that one end of each linear di-acid is displaced further from the surface of the apatitic OCP layer relative to the other end. Overall the results indicate two di-acids per unit cell disposed perpendicularly across the OCP hydrated layer with one carboxylate of each di-acid substituting a hydrated surface OCP phosphate group. This study re-affirms the unique advantages of ssNMR in elucidating structural details of organic-inorganic biocomposites, and thereby mechanisms underlying the roles of small metabolites in influencing biomineralization mechanisms and outcomes.
Asunto(s)
Adipatos/química , Fosfatos de Calcio/química , Espectroscopía de Resonancia Magnética , Ácido Succínico/químicaRESUMEN
Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.
RESUMEN
We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets.
Asunto(s)
Huesos/metabolismo , Ácido Cítrico/metabolismo , Minerales/metabolismo , Animales , Fosfatos de Calcio/metabolismo , Caballos , Espectroscopía de Resonancia Magnética , Difracción de Polvo , ConejosRESUMEN
We have prepared mouse fur extensively 13C,15N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. 13C double quantum-single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α-helical, and ß-sheet/random coil components, enables resolution of otherwise overlapped α-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.
Asunto(s)
Pelaje de Animal/química , Queratinas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Aminoácidos , Animales , Espectroscopía de Resonancia Magnética/métodos , Ratones , Resonancia Magnética Nuclear BiomolecularRESUMEN
Fluorescein is known to exist in three tautomeric forms defined as quinoid, zwitterionic, and lactoid. In the solid state, the quinoid and zwitterionic forms give rise to red and yellow materials, respectively. The lactoid form has not been crystallized pure, although its cocrystal and solvate forms exhibit colors ranging from yellow to green. An explanation for the observed colors of the crystals is found using a combination of UV/Vis spectroscopy and plane-wave DFT calculations. The role of cocrystal coformers in modifying crystal color is also established. Several new crystal structures are determined using a combination of X-ray and electron diffraction, solid-state NMR spectroscopy, and crystal structure prediction (CSP). The protocol presented herein may be used to predict color properties of materials prior to their synthesis.
RESUMEN
The mechanism and products of the structural collapse of the metalorganic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metalligand bonding in each case. The amorphous products contain inorganicorganic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.
RESUMEN
An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level (13)C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Animales , Ratones , Resonancia Magnética Nuclear Biomolecular/métodos , Especificidad de ÓrganosRESUMEN
Members of the genus Cerithidea are common components of the fauna of mangrove forests, tidal swamps and salt marshes in the Indo-West Pacific province, in marine and brackish conditions. The snails typically rest on the trunks of trees and other vegetation and migrate to the substrate to feed at low tide. In many areas mangrove habitats are under threat and some Cerithidea species are therefore considered to be endangered. In current taxonomic literature, ten species are recognized on the basis of shell morphology. A recently published molecular phylogenetic analysis has increased this to fifteen. The present study is a systematic account of these fifteen recognized species. Of these, two are newly described: C. houbricki and C. andamanensis. The species accounts include full synonymies, detailed descriptions of shells based on 621 museum samples, descriptions of living animals, distribution records and maps, reviews of habitat and ecology, and notes on conservation status.
Asunto(s)
Caracoles/clasificación , Animales , Biodiversidad , Ecosistema , Especies en Peligro de Extinción , Geografía , Océano Índico , Océano Pacífico , Filogenia , Caracoles/anatomía & histología , Caracoles/genética , Especificidad de la EspecieRESUMEN
The genus Cerithideopsis is most common in mangrove and salt marsh habitats of the New World tropics, but there is also a small radiation in the Indo-West Pacific region. Previously, these Indo-Pacific snails have generally been classified as Cerithidea largillierti (Philippi, 1848). Molecular phylogenetic analysis (partial sequences of mitochondrial COI and 16S rRNA, and nuclear 28S rRNA) of 15 specimens from 8 localities between Japan and Australia reveal three clades, among which there are small morphological differences and which show allopatric distributions. Cerithideopsis largillierti sensu stricto is restricted to Japan and China, while the two other species are described as new: C. australiensis occurs in tropical Australasia and C. malayensis is found from Malaysia to Java and the Philippines. All occur on mud and in pools with leaf litter, in the shaded landward and middle zones of mangrove forests, and do not climb the trees. The species accounts include full synonymies, detailed descriptions of shells based on 82 museum samples, descriptions of living animals, distribution records and maps, and notes on habitat and conservation status.
Asunto(s)
Organismos Acuáticos/clasificación , Gastrópodos/clasificación , Exoesqueleto/anatomía & histología , Animales , Organismos Acuáticos/genética , Ecosistema , Gastrópodos/anatomía & histología , Gastrópodos/genética , Datos de Secuencia Molecular , Océanos y Mares , FilogeniaRESUMEN
The monophyly of the muricid subfamily Rapaninae has recently been confirmed with molecular techniques, but its composition and the relationships among its constituent genera remain unclear. We use four genes (28S rRNA, 12S rRNA, 16S rRNA and cytochrome c oxidase subunit I, COI) to construct a Bayesian phylogeny of 80 rapanine species (73% of the approximately 109 currently accepted), representing 27 of the 31 nominal genera. This is the most complete phylogeny of this taxonomically confusing subfamily yet produced. We propose a revised phylogenetic classification of the Rapaninae, assigning the recognized species to 28 genera. Most of the morphologically-defined rapanine genera are considered valid, including Purpura, Drupa, Thais and Nassa, but many of them are here restricted or redefined so that they are monophyletic. In particular the familiar genus Thais is narrowly restricted to a single species. Many groups previously accepted as subgenera, including Mancinella, Vasula, Thalessa and Thaisella, are here accorded full generic rank. We describe one new genus, Indothais. While we do not formally alter species-level taxonomy, we show molecular evidence for two cryptic species and several instances of probable species synonymy. We estimate the age of diversification of the Rapaninae as Late Cretaceous (75.9 Ma) and of many of its genera as Miocene.
Asunto(s)
Evolución Molecular , Gastrópodos/clasificación , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Fósiles , Gastrópodos/genética , Modelos Genéticos , Análisis de Secuencia de ADNRESUMEN
There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing ¹³C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate.
Asunto(s)
Cartílago Articular/metabolismo , Ácido Cítrico/metabolismo , Cálculos Renales/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Apatitas/química , Calcificación Fisiológica , Calcinosis/metabolismo , Calcinosis/patología , Fosfatos de Calcio/química , Caballos , Humanos , Cálculos Renales/patología , Espectroscopía de Resonancia Magnética , Nefrolitiasis/metabolismo , Nefrolitiasis/patología , Placa Aterosclerótica/patología , Túnica Íntima/metabolismo , Túnica Íntima/patologíaRESUMEN
Understanding the pressures of fisheries on the ecosystem is crucial for effective management. Fishery removals, or catch, are composed of both landings and discards. However, the use of discards data in studies investigating the effect of the fishing pressures is sparse. Here, we explore the individual contribution of both these catch components to the overall pressure of fisheries on the ecosystem metrics. Using Irish observer data, we compare the linear relationship between several ecological metrics calculated for landings and discards with those of catch. Our results show that in fisheries with high discarding rates, discards can drive the fisheries' ecological fingerprint and highlight the need to rectify landings-based estimates to make them representative of those of catch in order to gain a robust picture of the impact of fisheries.
Asunto(s)
Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Peces/fisiología , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecología , Ecosistema , Irlanda , Dinámica Poblacional , Análisis de RegresiónRESUMEN
Here we report a new polyhydroxylated triterpene, 2ß,6ß,21α-trihydroxyfriedelan-3-one (4) isolated from the root and stem bark of Dichapetalum albidum A. Chev (Dichapetalaceae), along with six known triterpenoids (1-3, 5, 6, 8), sitosterol-3ß-O-D-glucopyranoside (9), a dipeptide (7), and a tyramine derivative of coumaric acid (10). Friedelan-3-one (2) showed an antimicrobial activity (IC50) of 11.40 µg/mL against Bacillus cereus, while friedelan-3α-ol (1) gave an IC50 of 13.07 µg/mL against Staphylococcus aureus with ampicillin reference standard of 19.52 µg/mL and 0.30 µg/mL respectively. 3ß-Acetyl tormentic acid (5) showed an IC50 of 12.50 µg/mL against Trypanosoma brucei brucei and sitosterol-3ß-O-d-glucopyranoside (9) showed an IC50 of 5.06 µg/mL against Leishmania donovani with respective reference standards of IC50 5.02 µg/mL for suramin and IC50 0.27 µg/mL for amphotericin B. Molecular docking of the isolated compounds on the enzyme glucose-6-phosphate dehydrogenase (G6PDH) suggested 3ß-acetyl tormentic acid (5) and sitosterol-3ß-O-D-glucopyranoside (9) as plausible inhibitors of the enzyme in accordance with the experimental biological results observed.
RESUMEN
Pathomechanisms underlying vascular calcification biogenesis are still incompletely understood. Biomineral from human atherosclerotic intimal plaques; human, equine, and bovine medial vascular calcifications; and human and equine bone was released from collagenous organic matrix by sodium hydroxide/sodium hypochlorite digestion. Solid-state (13)C NMR of intimal plaque mineral shows signals from cholesterol/cholesteryl esters and fatty acids. In contrast, in mineral from pure medial calcifications and bone mineral, fatty acid signals predominate. Refluxing (chloroform/methanol) intimal plaque calcifications removes the cholesterylic but not the fatty acyl signals. The lipid composition of this refluxed mineral now closely resembles that of the medial and bone mineral, which is unchanged by reflux. Thus, intimal and medial vascular calcifications and bone mineral have in common a pool of occluded mineral-entrained fatty acyl-rich lipids. This population of fatty acid may contain methyl-branched fatty acids, possibly representing lipoprotein particle remnants. Cell signaling and mechanistic parallels between physiological (orthotopic) and pathological (ectopic) calcification are also reflected thus in the NMR spectroscopic fingerprints of mineral-associated and mineral-entrained lipids. Additionally the atherosclerotic plaque mineral alone shows a significant independent pool of cholesterylic lipids. Colocalization of mineral and lipid may be coincidental, but it could also reflect an essential mechanistic component of biomineralization.
Asunto(s)
Calcificación Fisiológica , Metabolismo de los Lípidos , Túnica Íntima/metabolismo , Calcificación Vascular/metabolismo , Animales , Bovinos , Matriz Extracelular/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Solventes/química , Calcificación Vascular/patologíaRESUMEN
Snails in the closely related trochid genera Phorcus Risso, 1826 and Osilinus Philippi, 1847 are ecologically important algal grazers in the intertidal zone of the northeastern Atlantic Ocean and Mediterranean Sea. Here we present the first complete molecular phylogeny for these genera, based on the nuclear 28S rRNA gene and the mitochondrial 16S rRNA and COI genes, and show that the current classification is erroneous. We recognize nine species in a single genus, Phorcus: estimated by BEAST analysis, this arose 30 (± 10) Ma; it consists of two subgenera, Phorcus and Osilinus, which we estimate diverged 14 (± 4.5) Ma. Osilinus kotschyi, from the Arabian and Red Seas, is not closely related and is tentatively referred to Priotrochus Fischer, 1879. Our phylogeny allows us to address biogeographical questions concerning the origins of the Mediterranean and Macaronesian species of this group. The former appear to have evolved from Atlantic ancestors that invaded the Mediterranean on several occasions after the Zanclean Flood, which ended the Messinian Salinity Crisis 5.3 Ma; whereas the latter arose from several colonizations of mainland Atlantic ancestors within the last 3 (± 1.5) Ma.
Asunto(s)
Gastrópodos/genética , Filogenia , Animales , Océano Atlántico , Teorema de Bayes , Complejo IV de Transporte de Electrones/genética , Gastrópodos/clasificación , Especiación Genética , Variación Genética , Mar Mediterráneo , Datos de Secuencia Molecular , Filogeografía , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Movimientos del AguaRESUMEN
PURPOSE: We characterized the biomacromolecular composition of phosphatic urinary stones using solid state nuclear magnetic resonance spectroscopy. We identified possible parallels between the nature of the organic matrix-mineral interface in stones and that in other mineralized tissue using nuclear magnetic resonance spectroscopy rotational echo double resonance. MATERIALS AND METHODS: We analyzed 28 phosphatic (apatite and mixed apatite-struvite) surgically removed stones by nuclear magnetic resonance spectroscopy using (31)P, (13)C and a 9.4 Tesla magnetic field. Ten samples had sufficient signal from biomacromolecular organic material to characterize the mineral/organic interface by (13)C{(31)P} rotational echo double resonance. RESULTS: Biomacromolecular organic material was most abundant in phosphatic stones in which apatite predominated. Nuclear magnetic resonance spectroscopy detected variable proportions of protein, glycosaminoglycan, lipid and carbonate. Rotational echo double resonance revealed strong interaction between mineral and glycosaminoglycan molecules, and to a lesser extent protein molecules, on the sub-nm length scale, implying that glycosaminoglycan and protein are composited into or onto the mineral lattice by strong physicochemical interactions. Carbonate ions substituted into apatite crystal lattices also showed the expected strong (13)C{(31)P} rotational echo double resonance effects. Conversely when present, lipid, calcium oxalate hydrates and uric acid showed no rotational echo double resonance effects, proving that they exist as deposits or crystals distinct from phosphatic mineral/biomacromolecular composites. CONCLUSIONS: The intimate coexistence of biomacromolecules, especially glycosaminoglycan, with apatite in phosphatic stones supports the notion that they may have a key role in stone pathogenesis. The underlying intermolecular relationships may reflect those governing the formation of Randall's plaque in nascent stones.
Asunto(s)
Apatitas/química , Glicosaminoglicanos/metabolismo , Cálculos Renales/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/metabolismo , Femenino , Humanos , Cálculos Renales/fisiopatología , Cálculos Renales/prevención & control , Masculino , Prevención Primaria , Muestreo , Índice de Severidad de la EnfermedadRESUMEN
UNLABELLED: In pilot studies of the usefulness of solid state nuclear magnetic resonance spectroscopy in characterizing chemical and molecular structural effects of alkaptonuria on connective tissue, we have obtained (13) C spectra from articular cartilage from an AKU patient. An apparently normal anatomical location yielded a cross polarization magic angle spinning spectrum resembling literature spectra and dominated by collagen and glycosaminoglycan signals. All spectral linewidths from strongly pigmented ochronotic cartilage however were considerably increased relative to the control indicating a marked increase in collagen molecular disorder. This disordering of cartilage structural protein parallels, at the atomic level, the disordering revealed at higher length scales by microscopy. We also demonstrate that the abnormal spectra from ochronotic cartilage fit with the abnormality in the structure of collagen fibres at the ultrastructural level, whereby large ochronotic deposits appear to alter the structure of the collagen fibre by invasion and cross linking. SUMMARY: Increased signal linewidths in solid state NMR spectra of ochronotic articular cartilage from an AKU patient relative to linewidths in normal, control, cartilage reveals a marked decrease in collagen molecular order in the diseased tissue. This atomic level disordering parallels higher length scale disorder revealed by microscopic techniques.
Asunto(s)
Alcaptonuria/complicaciones , Enfermedades de los Cartílagos/patología , Cartílago Articular/química , Colágeno/análisis , Colágeno/ultraestructura , Glicosaminoglicanos/análisis , Ocronosis/diagnóstico por imagen , Anciano , Enfermedades de los Cartílagos/etiología , Cartílago Articular/ultraestructura , Colágeno/química , Femenino , Glicosaminoglicanos/química , Humanos , Espectroscopía de Resonancia Magnética/métodos , Ocronosis/etiología , Proyectos Piloto , UltrasonografíaRESUMEN
Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²7Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Curtiembre/métodos , Taninos/análisis , Aluminio/química , Animales , Bovinos , Compuestos de Cromo/química , Glutaral/química , Estructura Molecular , Extractos Vegetales/química , Sulfatos/químicaRESUMEN
The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration.
Asunto(s)
Adaptación Fisiológica , Exoesqueleto/fisiología , Invertebrados/fisiología , Estado de Hidratación del Organismo/fisiología , Exoesqueleto/anatomía & histología , Exoesqueleto/ultraestructura , Animales , Invertebrados/anatomía & histología , Invertebrados/ultraestructura , Microscopía ElectrónicaRESUMEN
Failure to express or expression of dysfunctional low-density lipoprotein receptors (LDLR) causes familial hypercholesterolemia in humans, a disease characterized by elevated blood cholesterol concentrations, xanthomas, and coronary heart disease, providing compelling evidence that high blood cholesterol concentrations cause atherosclerosis. In this study, we used (1)H nuclear magnetic resonance spectroscopy to examine the metabolic profiles of plasma and urine from the LDLR knockout mice. Consistent with previous studies, these mice developed hypercholesterolemia and atherosclerosis when fed a high-fat/cholesterol/cholate-containing diet. In addition, multivariate statistical analysis of the metabolomic data highlighted significant differences in tricarboxylic acid cycle and fatty acid metabolism, as a result of high-fat/cholesterol diet feeding. Our metabolomic study also demonstrates that the effect of high-fat/cholesterol/cholate diet, LDLR gene deficiency, and the diet-genotype interaction caused a significant perturbation in choline metabolism, notably the choline oxidation pathway. Specifically, the loss in the LDLR caused a marked reduction in the urinary excretion of betaine and dimethylglycine, especially when the mice are fed a high-fat/cholesterol/cholate diet. Furthermore, as we demonstrate that these metabolic changes are comparable with those detected in ApoE knockout mice fed the same high-fat/cholesterol/cholate diet they may be useful for monitoring the onset of atherosclerosis across animal models.