Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38843116

RESUMEN

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

2.
IEEE Trans Med Imaging ; 43(7): 2448-2465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38373126

RESUMEN

Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT- a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320×320×320 . We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.


Asunto(s)
Pulmón , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Algoritmos , Radiografía Torácica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
3.
Sci Transl Med ; 16(760): eado1097, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141699

RESUMEN

Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.


Asunto(s)
Pulmón , Respiración con Presión Positiva , Respiración Artificial , Animales , Pulmón/fisiopatología , Ovinos , Fenómenos Biomecánicos , Respiración Artificial/efectos adversos , Presión , Tomografía Computarizada por Rayos X , Volumen de Ventilación Pulmonar
4.
Int J Radiat Oncol Biol Phys ; 119(5): 1393-1402, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387810

RESUMEN

PURPOSE: To determine whether 4-dimensional computed tomography (4DCT) ventilation-based functional lung avoidance radiation therapy preserves pulmonary function compared with standard radiation therapy for non-small cell lung cancer (NSCLC). METHODS AND MATERIALS: This single center, randomized, phase 2 trial enrolled patients with NSCLC receiving curative intent radiation therapy with either stereotactic body radiation therapy or conventionally fractionated radiation therapy between 2016 and 2022. Patients were randomized 1:1 to standard of care radiation therapy or functional lung avoidance radiation therapy. The primary endpoint was the change in Jacobian-based ventilation as measured on 4DCT from baseline to 3 months postradiation. Secondary endpoints included changes in volume of high- and low-ventilating lung, pulmonary toxicity, and changes in pulmonary function tests (PFTs). RESULTS: A total of 122 patients were randomized and 116 were available for analysis. Median follow up was 29.9 months. Functional avoidance plans significantly (P < .05) reduced dose to high-functioning lung without compromising target coverage or organs at risk constraints. When analyzing all patients, there was no difference in the amount of lung showing a reduction in ventilation from baseline to 3 months between the 2 arms (1.91% vs 1.87%; P = .90). Overall grade ≥2 and grade ≥3 pulmonary toxicities for all patients were 24.1% and 8.6%, respectively. There was no significant difference in pulmonary toxicity or changes in PFTs between the 2 study arms. In the conventionally fractionated cohort, there was a lower rate of grade ≥2 pneumonitis (8.2% vs 32.3%; P = .049) and less of a decline in change in forced expiratory volume in 1 second (-3 vs -5; P = .042) and forced vital capacity (1.5 vs -6; P = .005) at 3 months, favoring the functional avoidance arm. CONCLUSIONS: There was no difference in posttreatment ventilation as measured by 4DCT between the arms. In the cohort of patients treated with conventionally fractionated radiation therapy with functional lung avoidance, there was reduced pulmonary toxicity, and less decline in PFTs suggesting a clinical benefit in patients with locally advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Pulmón , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Femenino , Anciano , Persona de Mediana Edad , Pulmón/efectos de la radiación , Pulmón/diagnóstico por imagen , Radiocirugia/efectos adversos , Radiocirugia/métodos , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/efectos de la radiación , Órganos en Riesgo/diagnóstico por imagen , Pruebas de Función Respiratoria , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA