Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Cell ; 80(4): 736-743.e4, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33098764

RESUMEN

The phosphoinositide PI(3,5)P2, generated exclusively by the PIKfyve lipid kinase complex, is key for lysosomal biology. Here, we explore how PI(3,5)P2 levels within cells are regulated. We find the PIKfyve complex comprises five copies of the scaffolding protein Vac14 and one copy each of the lipid kinase PIKfyve, generating PI(3,5)P2 from PI3P and the lipid phosphatase Fig4, reversing the reaction. Fig4 is active as a lipid phosphatase in the ternary complex, whereas PIKfyve within the complex cannot access membrane-incorporated phosphoinositides due to steric constraints. We find further that the phosphoinositide-directed activities of both PIKfyve and Fig4 are regulated by protein-directed activities within the complex. PIKfyve autophosphorylation represses its lipid kinase activity and stimulates Fig4 lipid phosphatase activity. Further, Fig4 is also a protein phosphatase acting on PIKfyve to stimulate its lipid kinase activity, explaining why catalytically active Fig4 is required for maximal PI(3,5)P2 production by PIKfyve in vivo.


Asunto(s)
Membrana Celular/metabolismo , Flavoproteínas/metabolismo , Homeostasis , Lisosomas/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Unión Proteica , Conformación Proteica , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621120

RESUMEN

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Asunto(s)
Proteínas de la Membrana , Péptidos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Membranas/metabolismo , Lípidos , Membrana Dobles de Lípidos/química
3.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190532

RESUMEN

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Asunto(s)
Autofagosomas , Gotas Lipídicas , Autofagia , Lípidos de la Membrana
4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35267021

RESUMEN

At organelle-organelle contact sites, proteins have long been known to facilitate the rapid movement of lipids. Classically, this lipid transport involves the extraction of single lipids into a hydrophobic pocket on a lipid transport protein. Recently, a new class of lipid transporter has been described with physical characteristics that suggest these proteins are likely to function differently. They possess long hydrophobic tracts that can bind many lipids at once and physically span the entire gulf between membranes at contact sites, suggesting that they may act as bridges to facilitate bulk lipid flow. Here, we review what has been learned regarding the structure and function of this class of lipid transporters, whose best characterized members are VPS13 and ATG2 proteins, and their apparent coordination with other lipid-mobilizing proteins on organelle membranes. We also discuss the prevailing hypothesis in the field, that this type of lipid transport may facilitate membrane expansion through the bulk delivery of lipids, as well as other emerging hypotheses and questions surrounding these novel lipid transport proteins.


Asunto(s)
Membranas Mitocondriales , Biogénesis de Organelos , Proteínas Portadoras/metabolismo , Lípidos , Membranas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850023

RESUMEN

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogénesis de Organelos , Proteínas de Transferencia de Fosfolípidos/fisiología
6.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585354

RESUMEN

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/química
7.
EMBO J ; 37(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29467216

RESUMEN

Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non-vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a-c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo-bound and sterol-bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein-related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3-hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.


Asunto(s)
Proteínas Portadoras/metabolismo , Esteroles/metabolismo , Metabolismo de los Lípidos , Dominios Proteicos
8.
Nature ; 510(7506): 552-5, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847877

RESUMEN

Growing evidence suggests that close appositions between the endoplasmic reticulum (ER) and other membranes, including appositions with the plasma membrane (PM), mediate exchange of lipids between these bilayers. The mechanisms of such exchange, which allows lipid transfer independently of vesicular transport, remain poorly understood. The presence of a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, a proposed lipid-binding module, in several proteins localized at membrane contact sites has raised the possibility that such domains may be implicated in lipid transport. SMP-containing proteins include components of the ERMES complex, an ER­mitochondrial tether, and the extended synaptotagmins (known as tricalbins in yeast), which are ER­PM tethers. Here we present at 2.44 Å resolution the crystal structure of a fragment of human extended synaptotagmin 2 (E-SYT2), including an SMP domain and two adjacent C2 domains. The SMP domain has a ß-barrel structure like protein modules in the tubular-lipid-binding (TULIP) superfamily. It dimerizes to form an approximately 90-Å-long cylinder traversed by a channel lined entirely with hydrophobic residues, with the two C2A­C2B fragments forming arched structures flexibly linked to the SMP domain. Importantly, structural analysis complemented by mass spectrometry revealed the presence of glycerophospholipids in the E-SYT2 SMP channel, indicating a direct role for E-SYTs in lipid transport. These findings provide strong evidence for a role of SMP-domain-containing proteins in the control of lipid transfer at membrane contact sites and have broad implications beyond the field of ER-to-PM appositions.


Asunto(s)
Metabolismo de los Lípidos , Lípidos , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Glicerofosfolípidos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
9.
Proc Natl Acad Sci U S A ; 114(52): 13720-13725, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229838

RESUMEN

Plasma membrane (PM) phosphoinositides play essential roles in cell physiology, serving as both markers of membrane identity and signaling molecules central to the cell's interaction with its environment. The first step in PM phosphoinositide synthesis is the conversion of phosphatidylinositol (PI) to PI4P, the precursor of PI(4,5)P2 and PI(3,4,5)P3 This conversion is catalyzed by the PI4KIIIα complex, comprising a lipid kinase, PI4KIIIα, and two regulatory subunits, TTC7 and FAM126. We here report the structure of this complex at 3.6-Å resolution, determined by cryo-electron microscopy. The proteins form an obligate ∼700-kDa superassembly with a broad surface suitable for membrane interaction, toward which the kinase active sites are oriented. The structural complexity of the assembly highlights PI4P synthesis as a major regulatory junction in PM phosphoinositide homeostasis. Our studies provide a framework for further exploring the mechanisms underlying PM phosphoinositide regulation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Proteínas/química , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas/metabolismo
10.
Immunity ; 30(1): 21-32, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19119025

RESUMEN

Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 A resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Péptidos/inmunología , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/química , Animales , Línea Celular , Cristalografía por Rayos X , Dimerización , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Estructura Cuaternaria de Proteína
11.
Biochim Biophys Acta ; 1861(8 Pt B): 924-927, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26686281

RESUMEN

SMP-domains are found in proteins that localize to membrane contact sites. Elucidation of the properties of these proteins gives clues as to the molecular bases underlying processes that occur at such sites. Described here are recent discoveries concerning the structure, function, and regulation of the Extended-Synaptotagmin proteins and ERMES complex subunits, SMP-domain proteins at endoplasmic reticulum (ER)-plasma membrane and ER-mitochondrial contacts, respectively. They act as tethers contributing to the architecture of these sites and as lipid transporters that convey glycerolipids between apposed membranes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad , Sinaptotagminas/química , Sinaptotagminas/fisiología
12.
Traffic ; 15(5): 488-99, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24483784

RESUMEN

Tethering proteins play a key role in vesicular transport, ensuring that cargo arrives at a specific destination. The bacterial effector protein SidC and its paralog SdcA have been described as tethering factors encoded by the intracellular pathogen Legionella pneumophila. Here, we demonstrate that SidC proteins are important for early events unique to maturation of vacuoles containing Legionella and discover monoubiquitination of Rab1 as a new SidC-dependent activity. The crystal structure of the SidC N-terminus revealed a novel fold that is important for function and could be involved in Legionella adaptations to evolutionarily divergent host cells it encounters in natural environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transporte Biológico/fisiología , Legionella pneumophila/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Ubiquitinación/fisiología , Proteínas de Unión al GTP rab1/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(48): 19432-7, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218626

RESUMEN

The transport protein particle (TRAPP) III complex, comprising the TRAPPI complex and additional subunit Trs85, is an autophagy-specific guanine nucleotide exchange factor for the Rab GTPase Ypt1 that is recruited to the phagophore assembly site when macroautophagy is induced. We present the single-particle electron microscopy structure of TRAPPIII, which reveals that the dome-shaped Trs85 subunit associates primarily with the Trs20 subunit of TRAPPI. We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment. We provide evidence that COPII-coated vesicles and the ER-Golgi fusion machinery are needed for macroautophagy. Our results imply that TRAPPIII binds to COPII vesicles at the phagophore assembly site and that COPII vesicles may provide one of the membrane sources used in autophagosome formation. These events are conserved in yeast to mammals.


Asunto(s)
Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células COS , Chlorocebus aethiops , Cromatografía en Gel , Clonación Molecular , Electroporación , Escherichia coli , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Microscopía Fluorescente , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
J Am Chem Soc ; 136(9): 3456-64, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24533674

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate fusion by pulling biological membranes together via a zippering mechanism. Recent biophysical studies have shown that t- and v-SNAREs can assemble in multiple stages from the N-termini toward the C-termini. Here we show that functionally, membrane fusion requires a sequential, two-step folding pathway and assign specific and distinct functions for each step. First, the N-terminal domain (NTD) of the v-SNARE docks to the t-SNARE, which leads to a conformational rearrangement into an activated half-zippered SNARE complex. This partially assembled SNARE complex locks the C-terminal (CTD) portion of the t-SNARE into the same structure as in the postfusion 4-helix bundle, thereby creating the binding site for the CTD of the v-SNARE and enabling fusion. Then zippering of the remaining CTD, the membrane-proximal linker (LD), and transmembrane (TMD) domains is required and sufficient to trigger fusion. This intrinsic property of the SNAREs fits well with the action of physiologically vital regulators such as complexin. We also report that NTD assembly is the rate-limiting step. Our findings provide a refined framework for delineating the molecular mechanism of SNARE-mediated membrane fusion and action of regulatory proteins.


Asunto(s)
Fusión de Membrana , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animales , Membrana Celular/metabolismo , Cinética , Ratones , Modelos Moleculares , Estructura Terciaria de Proteína , Ratas , Termodinámica
15.
Proc Natl Acad Sci U S A ; 108(46): 18672-7, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22065758

RESUMEN

Rab GTPases are key regulators of membrane traffic pathways within eukaryotic cells. They are specifically activated by guanine nucleotide exchange factors (GEFs), which convert them from their "inactive" GDP-bound form to the "active" GTP-bound form. In higher eukaryotes, proteins containing DENN-domains comprise a major GEF family. Here we describe at 2.1-Å resolution the first structure of a DENN-domain protein, DENND1B-S, complexed with its substrate Rab35, providing novel insights as to how DENN-domain GEFs interact with and activate Rabs. DENND1B-S is bi-lobed, and interactions with Rab35 are through conserved surfaces in both lobes. Rab35 binds via switch regions I and II, around the nucleotide-binding pocket. Positional shifts in Rab residues required for nucleotide binding may lower its affinity for bound GDP, and a conformational change in switch I, which makes the nucleotide-binding pocket more solvent accessible, likely also facilitates exchange.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Factores de Intercambio de Guanina Nucleótido/química , Guanina/química , Proteínas de Unión al GTP rab/química , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X/métodos , Humanos , Cinética , Nucleótidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rab1/química
16.
Biophys J ; 105(11): 2507-16, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24314081

RESUMEN

Synaptotagmin triggers rapid exocytosis of neurotransmitters from synaptic vesicles in response to Calcium (Ca(2+)) ions. Here, we use a novel Nanodisc-based system, designed to be a soluble mimetic of the clamped synaptic vesicle-bilayer junction, combined with fluorescence resonance energy transfer (FRET) spectroscopy to monitor the structural relationships among SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), Synaptotagmin C2 domains, and the lipid bilayer in real time during the Ca(2+)-activation process. We report that Synaptotagmin remains rigidly fixed on the partially assembled SNARE complex with no detectable internal rearrangement of its C2 domains, even as it rapidly inserts into the bilayer. We hypothesize that this straightforward, one-step physical mechanism could explain how this Ca(2+)- sensor rapidly activates neurotransmitter release from the clamped state.


Asunto(s)
Calcio/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Proteína 25 Asociada a Sinaptosomas/química , Sinaptotagmina I/química , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Membrana Dobles de Lípidos/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(34): 15045-50, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696927

RESUMEN

The Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex recognizes aberrant RNAs in Saccharomyces cerevisiae and targets them for degradation. A TRAMP subcomplex consisting of a noncanonical poly(A) RNA polymerase in the Pol ss superfamily of nucleotidyl transferases, Trf4p, and a zinc knuckle protein, Air2p, mediates initial substrate recognition. Trf4p and related eukaryotic poly(A) and poly(U) polymerases differ from other characterized enzymes in the Pol ss superfamily both in sequence and in the lack of recognizable nucleic acid binding motifs. Here we report, at 2.7-A resolution, the structure of Trf4p in complex with a fragment of Air2p comprising two zinc knuckle motifs. Trf4p consists of a catalytic and central domain similar in fold to those of other noncanonical Pol beta RNA polymerases, and the two zinc knuckle motifs of Air2p interact with the Trf4p central domain. The interaction surface on Trf4p is highly conserved across eukaryotes, providing evidence that the Trf4p/Air2p complex is conserved in higher eukaryotes as well as in yeast and that the TRAMP complex may also function in RNA surveillance in higher eukaryotes. We show that Air2p, and in particular sequences encompassing a zinc knuckle motif near its N terminus, modulate Trf4p activity, and we present data supporting a role for this zinc knuckle in RNA binding. Finally, we show that the RNA 3' end plays a role in substrate recognition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/química , ARN de Hongos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
18.
Proc Natl Acad Sci U S A ; 107(32): 14176-81, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660722

RESUMEN

The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 A. We show that the C terminus consists of two alpha-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes--Dsl1, conserved oligomeric Golgi, and the exocyst--thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.


Asunto(s)
Proteínas Portadoras/química , Complejos Multiproteicos/química , Fragmentos de Péptidos/química , Proteínas de Saccharomyces cerevisiae/química , Red trans-Golgi/metabolismo , Cristalografía por Rayos X , Endosomas/metabolismo , Conformación Proteica , Subunidades de Proteína , Transporte de Proteínas
19.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693532

RESUMEN

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases". These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit-card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place, and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far overlooked role in membrane dynamics as scramblases.

20.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076959

RESUMEN

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin co-purifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA