RESUMEN
Sucrose transporters of the SUT4 clade show dual targeting to both the plasma membrane as well as to the vacuole. Previous investigations revealed a role for the potato sucrose transporter StSUT4 in flowering, tuberization, shade avoidance response, and ethylene production. Down-regulation of StSUT4 expression leads to early flowering, tuberization under long days, far-red light insensitivity, and reduced diurnal ethylene production. Sucrose export from leaves was increased and a phase-shift of soluble sugar accumulation in source leaves was observed, arguing for StSUT4 to be involved in the entrainment of the circadian clock. Here, we show that StSUT4, whose transcripts are highly unstable and tightly controlled at the post-transcriptional level, connects components of the ethylene and calcium signalling pathway. Elucidation of the StSUT4 interactome using the split ubiquitin system helped to prove direct physical interaction between the sucrose transporter and the ethylene receptor ETR2, as well as with the calcium binding potato calmodulin-1 (PCM1) protein, and a calcium-load activated calcium channel. The impact of calcium ions on transport activity and dual targeting of the transporter was investigated in detail. For this purpose, a reliable esculin-based transport assay was established for SUT4-like transporters. Site-directed mutagenesis helped to identify a diacidic motif within the seventh transmembrane spanning domain that is essential for sucrose transport activity and targeting, but not required for calcium-dependent inhibition. A link between sucrose, calcium and ethylene signalling has been previously postulated with respect to pollen tube growth, shade avoidance response, or entrainment of the circadian clock. Here, we provide experimental evidence for the direct interconnection of these signalling pathways at the molecular level by direct physical interaction of the main players.
Asunto(s)
Calcio , SacarosaRESUMEN
BACKGROUND: Investigation of X-chromosome inactivation patterns (XCIP) by determination of differential CpG-methylation has been widely applied for investigation of female cell clonality. Using this approach the clonal origin of various tumours has been corroborated. Controversially, strong age-related increase of peripheral blood (PB) cell clonality in haematologically healthy female subjects was reported. Recently, transcriptional XCIP ratio analysis challenged these results and questioned the suitability of methylation based clonality assays. METHODS: To reinvestigate XCIP-skewing in CD34, low-density mononuclear bone marrow (BM) as well as PB cells from healthy female subjects and patients with myelodysplastic syndromes (MDS), we established a transcriptional assay using pyrosequencing technique for quantification of single nucleotide polymorphism allele frequencies, representative for XCIP ratios. RESULTS: Our assay provides high sensitivity for XCIP ratio assessment as determined by standard curves, reproducibility, inter-marker correlation as well as correlation with the DNA-methylation based human androgen receptor (HUMARA) assay. Notably, in agreement with most studies investigating this issue, significant age-related increase of XCIP skewing in PB cells from healthy elderly female subjects was confirmed. Moreover, XCIP ratio analysis suggests even stronger clonal manifestation in BM and CD34 cells. In MDS, XCIP skewing levels were distinctively elevated as compared with controls of similar age and higher degrees were associated with poor clinical outcome. CONCLUSIONS: Transcriptional clonal profiling via pyrosequencing allows accurate assessment of XCIP ratios, confirms the validity of the DNA-methylation based HUMARA assay and reveals important insights into ageing healthy and myelodysplastic haematopoiesis.
Asunto(s)
Síndromes Mielodisplásicos/genética , Análisis de Secuencia de ADN/métodos , Inactivación del Cromosoma X/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Antígenos CD34/genética , Células de la Médula Ósea , Femenino , Hematopoyesis , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The important role of insulin-like growth factor binding protein 7 (IGFBP7) as a tumor suppressor in solid tumors has been revealed in several studies. Interestingly, in a recent study IGFBP7 was also shown to be aberrantly expressed in acute leukemia. Moreover, in acute T-lymphoblastic leukemia (T-ALL), high IGFBP7 expression predicts primary therapy resistance. In order to elucidate the mechanisms underlying aberrant IGFBP7 expression, we used pyrosequencing technology to investigate the DNA methylation of IGFBP7 in 109 T-ALL patient samples. Aberrant methylation was shown and hypomethylation was associated with an early immunophenotype and co-expression of the stem cell markers CD117 (P < 0.001) and CD34 (P < 0.001). In concordance, gene expression profiles of 86 T-ALL patients revealed upregulation of stem cell markers (CD34 and CD133) as well as genes associated with poor outcome and pathogenesis of leukemia (MN1, BAALC, FLT3) in the high IGFBP7 expression group. In conclusion, aberrant IGFBP7 expression is regulated by DNA methylation in acute leukemia. Hypomethylation of the gene is likely to characterize an immature and a more malignant subtype of the disease.
Asunto(s)
Metilación de ADN , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , ARN Mensajero/análisisRESUMEN
Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.
Asunto(s)
Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Solanum tuberosum/metabolismo , Sacarosa/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Estructura Terciaria de Proteína , Solanum tuberosum/química , Solanum tuberosum/enzimología , Solanum tuberosum/genéticaRESUMEN
Secreted frizzled related protein 1 (SFRP1) is an extracellular antagonist of the Wnt signalling pathway that plays an important role in the pathogenesis of solid tumours and haematopoietic malignancies. SFRP1 has been observed to be transcriptionally down-regulated due to hypermethylation in acute and chronic leukaemia, but so far not in myelodysplastic syndrome (MDS). Moreover, it has been shown that the epigenetic inactivation of SFRP1 correlates with an overexpression of the Wnt receptor Frizzled 3 (Fzd3) in acute leukaemia. Using real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) we examined mRNA expression of SFRP1 and Fzd3 in bone marrow cells derived from 121 patients with different risk types of MDS, acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). We employed pyrosequencing to quantify promoter DNA methylation in MDS and acute leukaemia. We detected significant lower mRNA transcription of SFRP1 in MDS compared to healthy individuals. However, DNA sequence mutations or frequent elevated DNA methylation levels of the SFRP1 promoter could not be observed in MDS but in AML and ALL as previously reported. The expression levels of Fzd3 were up-regulated in both acute leukaemia and MDS. Our data show a significant transcriptional down-regulation of SFRP1 as a common event in AML, ALL and - as demonstrated for the first time - in MDS. An inactivation of SFRP1 and the transcriptional up-regulation of Fzd3 seem to be associated with an activation of the Wnt signalling pathway in these haematopoietic diseases.