Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555189

RESUMEN

Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic anion transporting protein OATP1C1 (Mct8/Oatp1c1 DKO). In this study, we characterize impairments of brain structure and function in Mct8/Oatp1c1 DKO mice using multimodal magnetic resonance imaging (MRI) and assess the potential of the TH analogue 3,3',5-triiodothyroacetic acid (TRIAC) to rescue this phenotype. Structural and functional MRI were performed in 11-weeks-old male Mct8/Oatp1c1 DKO mice (N = 10), wild type controls (N = 7) and Mct8/Oatp1c1 DKO mice (N = 13) that were injected with TRIAC (400 ng/g bw s.c.) daily during the first three postnatal weeks. Grey and white matter volume were broadly reduced in Mct8/Oatp1c1 DKO mice. TRIAC treatment could significantly improve white matter thinning but did not affect grey matter loss. Network-based statistic showed a wide-spread increase of functional connectivity, while graph analysis revealed an impairment of small-worldness and whole-brain segregation in Mct8/Oatp1c1 DKO mice. Both functional deficits could be substantially ameliorated by TRIAC treatment. Our study demonstrates prominent structural and functional brain alterations in Mct8/Oatp1c1 DKO mice that may underlie the psychomotor deficiencies in AHDS. Additionally, we provide preclinical evidence that early-life TRIAC treatment improves white matter loss and brain network dysfunctions associated with TH transporter deficiency.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Simportadores , Sustancia Blanca , Animales , Masculino , Ratones , Sustancia Blanca/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormonas Tiroideas/metabolismo , Atrofia Muscular/metabolismo , Ratones Noqueados , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Simportadores/genética , Simportadores/metabolismo
2.
Neuroimage ; 225: 117510, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160087

RESUMEN

Alterations in the structural connectome of schizophrenia patients have been widely characterized, but the mechanisms remain largely unknown. Generative network models have recently been introduced as a tool to test the biological underpinnings of altered brain network formation. We evaluated different generative network models in healthy controls (n=152), schizophrenia patients (n=66), and their unaffected first-degree relatives (n=32), and we identified spatial and topological factors contributing to network formation. We further investigated how these factors relate to cognition and to polygenic risk for schizophrenia. Our data show that among the four tested classes of generative network models, structural brain networks were optimally accounted for by a two-factor model combining spatial constraints and topological neighborhood structure. The same wiring model explained brain network formation across study groups. However, relatives and schizophrenia patients exhibited significantly lower spatial constraints and lower topological facilitation compared to healthy controls. Further exploratory analyses point to potential associations of the model parameter reflecting spatial constraints with the polygenic risk for schizophrenia and cognitive performance. Our results identify spatial constraints and local topological structure as two interrelated mechanisms contributing to regular brain network formation as well as altered connectomes in schizophrenia and healthy individuals at familial risk for schizophrenia. On an exploratory level, our data further point to the potential relevance of spatial constraints for the genetic risk for schizophrenia and general cognitive functioning, thereby encouraging future studies in following up on these observations to gain further insights into the biological basis and behavioral relevance of model parameters.


Asunto(s)
Encéfalo/diagnóstico por imagen , Familia , Esquizofrenia/diagnóstico por imagen , Adulto , Encéfalo/fisiopatología , Estudios de Casos y Controles , Conectoma , Imagen de Difusión Tensora , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Análisis de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Adulto Joven
3.
Psychiatr Prax ; 49(1): 22-28, 2022 Jan.
Artículo en Alemán | MEDLINE | ID: mdl-33773502

RESUMEN

OBJECTIVE: Nationwide assessment of structural data and the frequency of use of coercive measures in forensic psychiatric hospitals in Germany. METHODS: Quantitative survey using a postal questionnaire on structural data and on the use of coercive measures in forensic psychiatric hospitals as part of the "ZIPHER" study. RESULTS: About one fourth of all forensic patients are affected by coercive measures, with seclusion (21.2 %) being way more often than mechanical restraint (3.2 %). This ratio contrasts with general psychiatric hospitals, where restraints are more common than seclusions. CONCLUSION: The results of the study reveal nationwide peculiarities in the use of coercive measures in forensic psychiatric hospitals. At the same time, it demonstrated the lack of general structural and process data of forensic hospitals in Germany.


Asunto(s)
Psiquiatría Forense , Trastornos Mentales , Coerción , Alemania , Hospitales Psiquiátricos , Humanos , Trastornos Mentales/terapia , Aislamiento de Pacientes , Restricción Física
4.
Transl Psychiatry ; 8(1): 68, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29581421

RESUMEN

Hyperconnectivity of the default-mode network (DMN) is one of the most widely replicated neuroimaging findings in major depressive disorder (MDD). Further, there is growing evidence for a central role of the lateral habenula (LHb) in the pathophysiology of MDD. There is preliminary neuroimaging evidence linking LHb and the DMN, but no causal relationship has been shown to date. We combined optogenetics and functional magnetic resonance imaging (fMRI), to establish a causal relationship, using an animal model of treatment-resistant depression, namely Negative Cognitive State rats. First, an inhibitory light-sensitive ion channel was introduced into the LHb by viral transduction. Subsequently, laser stimulation was performed during fMRI acquisition on a 9.4 Tesla animal scanner. Neural activity and connectivity were assessed, before, during and after laser stimulation. We observed a connectivity decrease in the DMN following laser-induced LHb perturbation. Our data indicate a causal link between LHb downregulation and reduction in DMN connectivity. These findings may advance our mechanistic understanding of LHb inhibition, which had previously been identified as a promising therapeutic principle, especially for treatment-resistant depression.


Asunto(s)
Encéfalo/fisiopatología , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Habénula/fisiopatología , Animales , Mapeo Encefálico , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Optogenética , Ratas
5.
Biol Psychiatry ; 84(2): 116-128, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29397900

RESUMEN

BACKGROUND: To explore the domain-general risk factor of early-life social stress in mental illness, rearing rodents in persistent postweaning social isolation has been established as a widely used animal model with translational relevance for neurodevelopmental psychiatric disorders such as schizophrenia. Although changes in resting-state brain connectivity are a transdiagnostic key finding in neurodevelopmental diseases, a characterization of imaging correlates elicited by early-life social stress is lacking. METHODS: We performed resting-state functional magnetic resonance imaging of postweaning social isolation rats (N = 23) 9 weeks after isolation. Addressing well-established transdiagnostic connectivity changes of psychiatric disorders, we focused on altered frontal and posterior connectivity using a seed-based approach. Then, we examined changes in regional network architecture and global topology using graph theoretical analysis. RESULTS: Seed-based analyses demonstrated reduced functional connectivity in frontal brain regions and increased functional connectivity in posterior brain regions of postweaning social isolation rats. Graph analyses revealed a shift of the regional architecture, characterized by loss of dominance of frontal regions and emergence of nonfrontal regions, correlating to our behavioral results, and a reduced modularity in isolation-reared rats. CONCLUSIONS: Our result of functional connectivity alterations in the frontal brain supports previous investigations postulating social neural circuits, including prefrontal brain regions, as key pathways for risk for mental disorders arising through social stressors. We extend this knowledge by demonstrating more widespread changes of brain network organization elicited by early-life social stress, namely a shift of hubness and dysmodularity. Our results highly resemble core alterations in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and attention-deficit/hyperactivity disorder in humans.


Asunto(s)
Encéfalo/fisiopatología , Condicionamiento Psicológico , Trastornos Mentales/fisiopatología , Vías Nerviosas/fisiopatología , Aislamiento Social , Animales , Conducta Animal , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA