Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3142-3149, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427383

RESUMEN

Optical metasurfaces enable the manipulation of the light-matter interaction in ultrathin layers. Compared with their metal or dielectric counterparts, hybrid metasurfaces resulting from the combination of dielectric and metallic nanostructures can offer increased possibilities for interactions between modes present in the system. Here, we investigate the interaction between lattice resonances in a hybrid metal-dielectric metasurface obtained from a single-step nanofabrication process. Finite-difference time domain simulations show the avoided crossing of the modes appearing in the wavelength-dependent absorptance inside the Ge upon variations in a selected geometry parameter as evidence for strong optical coupling. We find good agreement between the measured and simulated absorptance and reflectance spectra. Our metasurface design can be easily incorporated into a top-down optoelectronic device fabrication process with possible applications ranging from on-chip spectroscopy to sensing.

2.
Angew Chem Int Ed Engl ; 63(28): e202405780, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38693673

RESUMEN

Precious metal complexes remain ubiquitous in photoredox catalysis (PRC) despite concerted efforts to find more earth-abundant catalysts and replacements based on 3d metals in particular. Most otherwise plausible 3d metal complexes are assumed to be unsuitable due to short-lived excited states, which has led researchers to prioritize the pursuit of longer excited-state lifetimes through careful molecular design. However, we report herein that the C-H arylation of pyrroles and related substrates (which are benchmark reactions for assessing the efficacy of photoredox catalysts) can be achieved using a simple and readily accessible octahedral bis(diiminopyridine) cobalt complex, [1-Co](PF6)2. Notably, [1-Co]2+ efficiently functionalizes both chloro- and bromoarene substrates despite the short excited-state lifetime of the key photoexcited intermediate *[1-Co]2+ (8 ps). We present herein the scope of this C-H arylation protocol and provide mechanistic insights derived from detailed spectroscopic and computational studies. These indicate that, despite its transient existence, reduction of *[1-Co]2+ is facilitated via pre-assembly with the NEt3 reductant, highlighting an alternative strategy for the future development of 3d metal-catalyzed PRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA