Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(23): e2207125, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899445

RESUMEN

Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release. Similar cooperative effects must be explored when considering synthetic approaches for controlled membrane fusion. We show that liposomes decorated with amphiphilic Au nanoparticles (AuLips) can act as minimal tunable fusion machinery. AuLips fusion is triggered by divalent ions, while the number of fusion events dramatically changes with, and can be finely tuned by, the liposome cholesterol content. We combine quartz-crystal-microbalance with dissipation monitoring (QCM-D), fluorescence assays, and small-angle X-ray scattering (SAXS) with molecular dynamics (MD) at coarse-grained (CG) resolution, revealing new mechanistic details on the fusogenic activity of amphiphilic Au nanoparticles (AuNPs) and demonstrating the ability of these synthetic nanomaterials to induce fusion regardless of the divalent ion used (Ca2+ or Mg2+ ). The results provide a novel contribution to developing new artificial fusogenic agents for next-generation biomedical applications that require tight control of the rate of fusion events (e.g., targeted drug delivery).


Asunto(s)
Liposomas , Nanopartículas del Metal , Oro , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas , Colesterol , Iones
2.
J Biol Chem ; 293(37): 14192-14199, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30018138

RESUMEN

Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.


Asunto(s)
Amiloidosis/metabolismo , Plasminógeno/metabolismo , Prealbúmina/metabolismo , Amiloide/metabolismo , Bases de Datos de Proteínas , Fibrinolisina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Desnaturalización Proteica , Pliegue de Proteína , Proteolisis , Tripsina/metabolismo
3.
Hum Mol Genet ; 26(17): 3271-3284, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633380

RESUMEN

The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.


Asunto(s)
Ataxina-3/metabolismo , Catequina/análogos & derivados , Amiloide/metabolismo , Proteínas Amiloidogénicas , Animales , Caenorhabditis elegans/metabolismo , Catequina/química , Catequina/metabolismo , Modelos Animales de Enfermedad , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos , Fenoles/química , Fenoles/metabolismo
4.
Small ; 14(36): e1800890, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30091859

RESUMEN

Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/toxicidad , Proteínas de Escherichia coli/toxicidad , Nanopartículas/química , Pliegue de Proteína , Multimerización de Proteína , Espectrometría Raman/métodos , Pliegue de Proteína/efectos de los fármacos
5.
Biometals ; 31(4): 551-559, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29623474

RESUMEN

Specific mutations in APOA1 gene lead to systemic, hereditary amyloidoses. In ApoA-I related amyloidosis involving the heart, amyloid deposits are mainly constituted by the 93-residue N-terminal region of the protein, here indicated as [1-93]ApoA-I. Oxidative stress is known to be an enhancing factor for protein aggregation. In healthy conditions, humans are able to counteract the formation and the effects of oxidative molecules. However, aging and atmospheric pollution increase the concentration of oxidative agents, such as metal ions. As the main effect of iron deregulation is proposed to be an increase in oxidative stress, we analysed the effects of iron on [1-93]ApoA-I aggregation. By using different biochemical approaches, we demonstrated that Fe(II) is able to reduce the formation of [1-93]ApoA-I fibrillar species, probably by stabilizing its monomeric form, whereas Fe(III) shows a positive effect on polypeptide fibrillogenesis. We hypothesize that, in healthy conditions, Fe(III) is reduced by the organism to Fe(II), thus inhibiting amyloid formation, whereas during ageing such protective mechanisms decline, thus exposing the organism to higher oxidative stress levels, which are also related to an increase in Fe(III). This alteration could contribute to the pathogenesis of amyloidosis.


Asunto(s)
Amiloidosis Familiar/metabolismo , Apolipoproteína A-I/genética , Hierro/metabolismo , Miocardio/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Amiloidosis Familiar/genética , Amiloidosis Familiar/patología , Apolipoproteína A-I/química , Humanos , Hierro/química , Mutación , Miocardio/patología , Estrés Oxidativo/genética , Péptidos/química , Péptidos/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/fisiopatología
6.
J Biol Chem ; 291(18): 9678-89, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26921323

RESUMEN

The amyloidogenic variant of ß2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type ß2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type ß2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of ß2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N ß2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N ß2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N ß2-microglobulin fibrils.


Asunto(s)
Amiloide/química , Mutación Missense , Agregación Patológica de Proteínas , Microglobulina beta-2/química , Sustitución de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Cristalinas/química , Cristalinas/genética , Cristalinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
7.
Biochim Biophys Acta ; 1860(2): 434-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26515634

RESUMEN

Amyloidoses are devastating diseases characterized by accumulation of misfolded proteins which aggregate in fibrils. Specific gene mutations in Apolipoprotein A I (ApoAI) are associated with systemic amyloidoses. Little is known on the effect of mutations on ApoAI structure and amyloid properties. Here we performed a physico-chemical characterization of L75P- and L174S-amyloidogenic ApoAI (AApoAI) variants to shed light on the effects of two single point mutations on protein stability, proteolytic susceptibility and aggregation propensity. Both variants are destabilized in their N-terminal region and generate fibrils with different morphological features. L75P-AApoAI is significantly altered in its conformation and compactness, whereas a more flexible and pronounced aggregation-competent state is associated to L174S-AApoAI. These observations point out how single point mutations in ApoAI gene evocate differences in the physico-chemical and conformational behavior of the corresponding protein variants, with the common feature of diverting ApoAI from its natural role towards a pathogenic pathway.


Asunto(s)
Amiloidosis Familiar/genética , Apolipoproteína A-I/genética , Mutación Puntual , Apolipoproteína A-I/química , Humanos , Simulación de Dinámica Molecular , Agregado de Proteínas , Conformación Proteica , Estructura Secundaria de Proteína
8.
Proc Natl Acad Sci U S A ; 111(4): 1539-44, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474780

RESUMEN

The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the ß-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.


Asunto(s)
Amiloide/metabolismo , Prealbúmina/metabolismo , Prolina/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Amiloidosis/genética , Amiloidosis/patología , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Conformación Molecular , Datos de Secuencia Molecular , Fenotipo , Prealbúmina/química , Prealbúmina/genética , Proteolisis
9.
Biophys J ; 111(9): 2024-2038, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806283

RESUMEN

Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Fenómenos Electrofisiológicos , Miocitos Cardíacos/metabolismo , Prealbúmina/química , Prealbúmina/metabolismo , Agregado de Proteínas , Animales , Calcio/metabolismo , Citoplasma/metabolismo , Ventrículos Cardíacos/citología , Humanos , Ratones , Ratones Endogámicos C57BL
10.
J Biol Chem ; 290(4): 2395-404, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505181

RESUMEN

The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-ß aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a newly identified pathogenic mutation of α-synuclein, H50Q, aggregates faster than the wild-type. We investigate here its aggregation propensity by using a sequence-based prediction algorithm, NMR chemical shift analysis of secondary structure populations in the monomeric state, and determination of thermodynamic stability of the fibrils. Our data show that the H50Q mutation induces only a small increment in polyproline II structure around the site of the mutation and a slight increase in the overall aggregation propensity. We also find, however, that the H50Q mutation strongly stabilizes α-synuclein fibrils by 5.0 ± 1.0 kJ mol(-1), thus increasing the supersaturation of monomeric α-synuclein within the cell, and strongly favors its aggregation process. We further show that wild-type α-synuclein can decelerate the aggregation kinetics of the H50Q variant in a dose-dependent manner when coaggregating with it. These last findings suggest that the precise balance of α-synuclein synthesized from the wild-type and mutant alleles may influence the natural history and heterogeneous clinical phenotype of Parkinson disease.


Asunto(s)
Mutación , alfa-Sinucleína/genética , Amiloide/química , Sitios de Unión , Humanos , Cuerpos de Lewy/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Enfermedad de Parkinson/metabolismo , Péptidos/química , Fenotipo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Solubilidad , Termodinámica , alfa-Sinucleína/química
11.
Hum Mol Genet ; 23(24): 6542-52, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030034

RESUMEN

The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid ß-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in ß-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.


Asunto(s)
Amiloide/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/efectos de los fármacos , Catequina/análogos & derivados , Enfermedad de Machado-Joseph/tratamiento farmacológico , Proteínas del Tejido Nervioso/química , Fármacos Neuroprotectores/farmacología , Tetraciclina/farmacología , Amiloide/química , Amiloide/metabolismo , Animales , Ataxina-3 , Células COS , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Modelos Animales de Enfermedad , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Enlace de Hidrógeno , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Microscopía de Fuerza Atómica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Agregado de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
12.
Biol Chem ; 397(5): 401-15, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812789

RESUMEN

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Clusterina/química , Proteínas de Escherichia coli/química , Cadena B de alfa-Cristalina/química , Animales , Transferasas de Carboxilo y Carbamoilo/metabolismo , Línea Celular Tumoral , Clusterina/genética , Clusterina/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Ratones , Prealbúmina/química , Prealbúmina/genética , Prealbúmina/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
13.
FASEB J ; 29(9): 3689-701, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25977257

RESUMEN

Nucleophosmin (NPM)-1 is a multifunctional protein involved in a variety of biologic processes and has been implicated in the pathogenesis of several human malignancies. To gain insight into the role of isolated fragments in NPM1 activities, we dissected the C-terminal domain (CTD) into its helical fragments. In this study, we observed the unexpected structural behavior of the peptide fragment corresponding to helix (H)2 (residues 264-277). This peptide has a strong tendency to form amyloidlike assemblies endowed with fibrillar morphology and ß-sheet structure, under physiologic conditions, as shown by circular dichroism, thioflavin T, and Congo red binding assays; dynamic light scattering; and atomic force microscopy. The aggregates are also toxic to neuroblastoma cells, as determined using 3-(4;5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction and Ca(2+) influx assays. We also found that the extension of the H2 sequence beyond its N terminus, comprising the connecting loop with H1, delayed aggregation and its associated cytotoxicity, suggesting that contiguous regions of H2 have a protective role in preventing aggregation. Our findings and those in the literature suggest that the helical structures present in the CTD are important in preventing harmful aggregation. These findings could elucidate the pathogenesis of acute myeloid leukemia (AML) caused by NPM1 mutants. Because the CTD is not properly folded in these mutants, we hypothesize that the aggregation propensity of this NPM1 region is involved in the pathogenesis of AML. Preliminary assays on NPM1-Cter-MutA, the most frequent AML-CTD mutation, revealed its significant propensity for aggregation. Thus, the aggregation phenomena should be seriously considered in studies aimed at unveiling the molecular mechanisms of this pathology.


Asunto(s)
Amiloide/química , Proteínas de Neoplasias/química , Proteínas Nucleares/química , Agregación Patológica de Proteínas , Amiloide/genética , Amiloide/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
14.
Proc Natl Acad Sci U S A ; 109(31): 12479-84, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802614

RESUMEN

Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded oligomers preformed from three different proteins added extracellularly to cultured cells. All the chaperones were found to decrease oligomer toxicity significantly, even at very low chaperone/protein molar ratios, provided that they were added extracellularly rather than being overexpressed in the cytosol. Infrared spectroscopy and site-directed labeling experiments using pyrene ruled out structural reorganizations within the discrete oligomers. Rather, confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and chaperones. Moreover, atomic force microscopy imaging indicated that larger assemblies of oligomers are formed in the presence of the chaperones. This suggests that the chaperones bind to the oligomers and promote their assembly into larger species, with consequent shielding of the reactive surfaces and a decrease in their diffusional mobility. Overall, the data indicate a generic ability of chaperones to neutralize extracellular misfolded oligomers efficiently and reveal that further assembly of protein oligomers into larger species can be an effective strategy to neutralize such extracellular species.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Línea Celular Tumoral , Humanos , Chaperonas Moleculares/genética
15.
J Biol Chem ; 288(43): 30917-30, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24014031

RESUMEN

Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human ß2-microglobulin (ß2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N ß2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type ß2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition.


Asunto(s)
Amiloide/química , Mutación Missense , Pliegue de Proteína , alfa-Cristalinas/química , Microglobulina beta-2/química , Sustitución de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Amiloidosis Familiar/genética , Amiloidosis Familiar/metabolismo , Humanos , Estructura Cuaternaria de Proteína , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
16.
Biochim Biophys Acta ; 1833(12): 3155-3165, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035922

RESUMEN

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


Asunto(s)
Amiloide/toxicidad , Calcio/metabolismo , Cerebelo/citología , Espacio Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Animales , Apoptosis/efectos de los fármacos , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Gangliósido G(M1)/farmacología , Microscopía de Fuerza Atómica , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo
17.
Biochim Biophys Acta ; 1822(6): 906-17, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22330095

RESUMEN

Ataxin 1 (ATXN1) is the protein involved in spinocerebellar ataxia type 1, one of nine dominantly inherited neurodegenerative diseases triggered by polyglutamine expansion. One of the isolated polyglutamine tracts properties is to interact with lipid bilayers. Here we used a multidisciplinary approach to test whether one of the mechanisms responsible for neuronal degeneration involves the destabilization of the nuclear membrane. We thus analyzed the interaction between ATXN1 and lipid membranes, both on cellular models and on artificial lipid bilayers, comparing pathological expanded polyglutamine and histidine interrupted non-harmful polyglutamine tracts of the same length. The toxicity of the different constructs was tested in transiently transfected COS1 cells. Cells expressing pathological ATXN1 presented a significantly higher frequency of anomalous nuclei with respect to those expressing non-harmful ATXN1. Immunofluorescence and electron microscopy showed severe damage in the nuclear membrane of cells expressing the pathological protein. Atomic force microscopy on artificial membranes containing interrupted and non-interrupted partial ATXN1 peptides revealed a different arrangement of the peptides within the lipid bilayer. Force-distance measurements indicated that membrane fragility increases with the lengthening of the uninterrupted glutamine. Transmembrane electrical measurements were performed on artificial bilayers and on the inner nuclear membrane of ATXN1 full length transfected cells. Both artificial lipid bilayers and cellular models demonstrated the dynamic appearance of ionic pathways. Uninterrupted polyglutamines showed not only a larger ionic flow, but also an increase in the single event conductance. Collectively, our results suggest that expanded ATXN1 may induce unregulated ionic pathways in the nuclear membrane, causing severe damage to the cell.


Asunto(s)
Núcleo Celular/ultraestructura , Membrana Dobles de Lípidos/análisis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animales , Ataxinas , Células COS , Chlorocebus aethiops , Histidina/metabolismo , Microscopía de Fuerza Atómica , Péptidos/química , Ataxias Espinocerebelosas/patología
18.
Eur Phys J E Soft Matter ; 36(9): 102, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24045982

RESUMEN

Extended X-ray Absorption Fine Structure (EXAFS) measurements performed on Langmuir-Blodgett (LB) films containing cadmium and lead ions reveal the different coordination structures of the two cations in lipid membranes. We describe the local atomic environment of cadmium and lead in LB films prepared with stearic and 1,2 distearoyl-Lα-phosphatidic acids. The measurements have been performed on films of two different thicknesses, one and seven molecular layers, and at two different values of relative humidity. The local atomic environment of Cd ions in stearate films is consistent with unidentate coordination in which a Cd ion binds two stearate molecules, while that of Pb ions is consistent with a bidentate coordination in which a Pb ion binds one stearate molecule. Furthermore, in lead stearate films, there is Pb-Pb coordination as already observed in Langmuir films. In films of Pb-phosphatidic acid, oxygen atoms of the organic phosphate and oxygen atoms of bound water form two distinct shells.


Asunto(s)
Membrana Dobles de Lípidos/química , Cadmio/química , Plomo/química , Estearatos/química , Espectroscopía de Absorción de Rayos X
19.
Nucleic Acids Res ; 39(16): 7316-28, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21622956

RESUMEN

Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Modelos Moleculares , Mutación
20.
Materials (Basel) ; 16(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37109816

RESUMEN

We review the advances obtained by using Atomic Force Microscopy (AFM)-based approaches in the field of cell/tissue mechanics and adhesion, comparing the solutions proposed and critically discussing them. AFM offers a wide range of detectable forces with a high force sensitivity, thus allowing a broad class of biological issues to be addressed. Furthermore, it allows for the accurate control of the probe position during the experiments, providing spatially resolved mechanical maps of the biological samples with subcellular resolution. Nowadays, mechanobiology is recognized as a subject of great relevance in biotechnological and biomedical fields. Focusing on the past decade, we discuss the intriguing issues of cellular mechanosensing, i.e., how cells sense and adapt to their mechanical environment. Next, we examine the relationship between cell mechanical properties and pathological states, focusing on cancer and neurodegenerative diseases. We show how AFM has contributed to the characterization of pathological mechanisms and discuss its role in the development of a new class of diagnostic tools that consider cell mechanics as new tumor biomarkers. Finally, we describe the unique ability of AFM to study cell adhesion, working quantitatively and at the single-cell level. Again, we relate cell adhesion experiments to the study of mechanisms directly or secondarily involved in pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA