Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(1): 19-26, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36508310

RESUMEN

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are post-translationally modified peptides that play essential roles in root and shoot development, nitrogen absorption, nodule formation and stress resilience. However, it has proven challenging to determine biological activities of CEPs because of difficulties in obtaining loss-of-function mutants for these small genes. To overcome this challenge, we thus assembled a collection of easily detectable large fragment deletion mutants of Arabidopsis CEP genes through the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9-engineered genome editing. This collection was then evaluated for the usability by functionally analyzing the Arabidopsis growth and development with a focus on the root. Most cep mutants displayed developmental defects in primary and lateral roots showing an increased primary root length and an enhanced lateral root number, demonstrating that the genetic resource provides a useful tool for further investigations into the roles of CEPs.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Raíces de Plantas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Edición Génica , Eliminación de Secuencia
2.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982941

RESUMEN

Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (FST), and transcriptome analyses. Ten genes were identified using GWAS and FST: gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Transcriptoma , Animales , Pollos/genética , Perfilación de la Expresión Génica , Genómica , Polimorfismo de Nucleótido Simple , Selección Genética
3.
Animals (Basel) ; 14(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929399

RESUMEN

Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between different individuals, mainly related to genetics and age. As a specific behavior of hens, egg-laying also varies greatly between individuals in terms of traits such as age at first egg (AFE), egg weight (EW), and so on. At present, there are few studies on chicken spurs. In this study, we investigated the inheritance pattern of the spur trait in roosters with different phenotypes and the correlations between spur length, body weight at 18 weeks of age (BW18), shank length at 18 weeks of age (SL18), and the egg-laying trait in hens (both hens and roosters were from the same population and were grouped according to their family). These traits related to egg production included AFE, body weight at first egg (BWA), and first egg weight (FEW). We estimated genetic parameters based on pedigree and phenotype data, and used variance analysis to calculate broad-sense heritability for correcting the parameter estimation results. The results showed that the heritability of male left and right spurs ranged from 0.6 to 0.7. There were significant positive correlations between left and right spur length, BW18, SL18, and BWA, as well as between left and right spur length and AFE. We selected 35 males with the longest spurs and 35 males with the shortest spurs in the population, and pooled them into two sets to obtain the pooled genome sequencing data. After genome-wide association and genome divergency analysis by FST, allele frequency differences (AFDs), and XPEHH methods, we identified 7 overlapping genes (CENPE, FAT1, FAM149A, MANBA, NFKB1, SORBS2, UBE2D3) and 14 peak genes (SAMD12, TSPAN5, ENSGALG00000050071, ENSGALG00000053133, ENSGALG00000050348, CNTN5, TRPC6, ENSGALG00000047655,TMSB4X, LIX1, CKB, NEBL, PRTFDC1, MLLT10) related to left and right spur length through genome-wide selection signature analysis and a genome-wide association approach. Our results identified candidate genes associated with chicken spurs, which helps to understand the genetic mechanism of this trait and carry out subsequent research around it.

4.
Poult Sci ; 103(6): 103685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603937

RESUMEN

As a Chinese local chicken breed, Hongshan chickens have 2 kinds of tail feather phenotypes, normal and taillessness. Our previous studies showed that taillessness was a sex-linked dominant trait. Abnormal development of the tail vertebrae could be explained this phenomenon in some chicken breeds. However, the number of caudal vertebrae in rumpless Hongshan chickens was normal, so rumplessness in Hongshan chicken was not related to the development of the caudal vertebrae. Afterwards, we found that rumplessness in Hongshan was due to abnormal development of tail feather rather than abnormal development of caudal vertebrae. In order to understand the genetic foundation of the rumplessness of Hongshan chickens, we compared and reanalyzed 2 sets of data in normal and rumpless Hongshan chickens from our previous studies. By joint analysis of genome-wide selection signature analysis and genome-wide association approach, we found that 1 overlapping gene (EDIL3) and 16 peak genes (ENSGALG00000051843, ENSGALG00000053498, ENSGALG00000054800, KIF27, PTPRD, ENSGALG00000047579, ENSGALG00000041052, ARHGEF28, CAMK4, SERINC5, ENSGALG00000050776, ERCC8, MCC, ADAMTS19, ENSGALG00000053322, CHRNA8) located on the Z chromosome was associated with the rumpless trait. The results of this study furtherly revealed the molecular mechanism of the rumpless trait in Hongshan chickens, and identified the candidate genes associated with this trait. Our results will help to improve the shape of chicken tail feathers and to rise individual economic value in some specific market in China.


Asunto(s)
Pollos , Animales , Pollos/genética , Masculino , Femenino , Plumas , Cola (estructura animal)/anatomía & histología , Estudio de Asociación del Genoma Completo/veterinaria , Fenotipo , China
5.
Poult Sci ; 103(6): 103694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663207

RESUMEN

Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.


Asunto(s)
Patos , Plumas , Estudio de Asociación del Genoma Completo , Pigmentación , Secuenciación Completa del Genoma , Animales , Patos/genética , Patos/fisiología , Estudio de Asociación del Genoma Completo/veterinaria , Pigmentación/genética , Secuenciación Completa del Genoma/veterinaria , Fenotipo , Genoma
6.
Poult Sci ; 103(6): 103627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593551

RESUMEN

The age of first egg (AFE) in chicken can affect early and even life-time egg production performance to some extent, and therefore is an important economic trait that affects production efficiency. To better understand the genetic patterns of AFE and other production traits including body weight at first egg (BWA), first egg weight (FEW), and total egg number from AFE to 58 wk of age (total-EN), we recorded the production performance of 2 widely used layer breeds, white leghorn (WL) and Rhode Island Red (RIR) and estimated genetic parameters based on pedigree and production data. The results showed that the heritability of AFE in both breeds ranged from 0.4 to 0.6, and AFE showed strong positive genetic and phenotypic correlations to BWA as well as FEW, while showing strong negative genetic and phenotypic correlations with total-EN. Furtherly, by genome-wide association analysis study (GWAS), we identified 12 and 26 significant SNPs to be related to AFE in the 2-layer breeds, respectively. A total of 18 genes were identified that could affect AFE based on the significant SNP annotations obtained, but there were no gene overlapped in the 2 breeds indicating the genetic foundation of AFE could differ from breed to breed. Our results provided a deeper understanding of genetic patterns and molecular basement of AFE in different breeds and could help in the selection of egg production traits.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Pollos/fisiología , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Óvulo/fisiología , Fenotipo , Oviposición/genética
7.
Poult Sci ; 103(6): 103666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703454

RESUMEN

The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.


Asunto(s)
Pico , Pollos , Animales , Pollos/genética , Pollos/anatomía & histología , Pollos/fisiología , Pollos/crecimiento & desarrollo , Pico/anatomía & histología , Femenino , Fenotipo , Masculino
8.
Genome Biol Evol ; 15(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931036

RESUMEN

The nonrecombining female-limited W chromosome is predicted to experience unique evolutionary processes. Difficulties in assembling W chromosome sequences have hindered the identification of duck W-linked sequences and their evolutionary footprint. To address this, we conducted three initial contig-level genome assemblies and developed a rigorous pipeline by which to successfully expand the W-linked data set, including 11 known genes and 24 newly identified genes. Our results indicate that the W chromosome expression may not be subject to female-specific selection; a significant convergent pattern of upregulation associated with increased female-specific selection was not detected. The genetic stability of the W chromosome is also reflected in the strong evolutionary correlation between it and the mitochondria; the complete consistency of the cladogram topology constructed from their gene sequences proves the shared maternal coevolution. By detecting the evolutionary trajectories of W-linked sequences, we have found that recombination suppression started in four distinct strata, of which three were conserved across Neognathae. Taken together, our results have revealed a unique evolutionary pattern and an independent stratum evolutionary pattern for sex chromosomes.


Asunto(s)
Patos , Evolución Molecular , Animales , Femenino , Patos/genética , Cromosomas Sexuales , Aves/genética , Patrón de Herencia
9.
Poult Sci ; 102(12): 103068, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778296

RESUMEN

Cockfighting is popular worldwide, dating back to 2,800 BC. Primarily, 5 modern Chinese gamecock breeds exist, located in the northeast (Luxi and Henan), west (Turpan), south (Xishuangbanna), and southeast (Zhangzhou) of China. However, whether Chinese gamecocks were derived from a single origin or multiple origins remains controversial. Therefore, this study used next-generation resequencing data to elucidate the origin of Chinese gamecocks by constructing genome-wide and SRY-box transcription factor 5 (SOX5) gene phylogenetic trees. Data from 161 chickens from 27 breeds, including 9 gamecock breeds, were included. Before constructing the SOX5 gene tree, we validated that the pea-comb phenotype mutation in all gamecock breeds was attributed to copy number variation in intron 1 of the SOX5 gene, as previously reported. The specific region was chr1: 65,838,000 to 65,846,000. The phylogenetic tree results suggested that Zhangzhou and Xishuangbanna gamecocks have a monophyletic origin, while Luxi, Henan, and Turpan gamecocks have a common ancestor. Our study provides genome-wide evidence that Chinese gamecocks have multiple origins and advances the understanding of the genetic mechanisms of the pea-comb characteristic.


Asunto(s)
Pollos , Variaciones en el Número de Copia de ADN , Animales , Pollos/genética , Filogenia , Mutación , China , Variación Genética
10.
Poult Sci ; 102(11): 103031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716235

RESUMEN

Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.


Asunto(s)
Pollos , Animales , Peso Corporal/genética , Pollos/genética , Genómica , Metagenómica , Polimorfismo de Nucleótido Simple , China , Selección Artificial/genética
11.
Animals (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38066959

RESUMEN

Driven by natural and artificial selection, the domestic Huoyan geese from Northern China have gradually generated specific phenotypes and climatic adaptations. To understand the genetic basis of the two specific phenotypes that are sex linked, including upper eyelid coloboma and gosling feather color, as well as the climatic adaptations of the Huoyan goose, which can contribute to the artificial selection and breeding of geese. We selected Huoyan geese and nine Southern Chinese goose breeds and identified their divergence on the genomic level. Using selective sweep analysis, we found that PTPRM on chromosome Z influences the upper eyelid coloboma phenotype of the Huoyan goose, and TYRP1 is a plausible candidate gene for the Huoyan gosling feather color. We obtained a number of genes related to cold adaptation in Huoyan geese, mainly involved in physiological functions such as metabolism, angiogenesis contraction and circulatory system, apoptosis, immunity, stress, and neural system. The most interesting candidates for cold adaptation are PIP5K1B and NMNAT3 that are associated with energy metabolism and stress. We also obtained some genes related to heat adaptation, including AGTPBP1, associated with neurology; GDA, associated with skin pigmentation; and NAA35, associated with apoptosis. These findings deepen our understanding of the genetics of specific phenotypes and climate adaptation in local geese and provide insights for the selection of goose breeds.

12.
Poult Sci ; 102(7): 102766, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37229885

RESUMEN

Genomic admixture is a widespread phenomenon among domestic animal breeds, including chickens. However, reports on admixture within Chinese gamecocks or other indigenous chickens are limited. This study focuses on the population genetic structure and admixture of 5 Chinese gamecock breeds and the admixture with 9 other indigenous Chinese chicken breeds. Our results showed that Turpan and Henan gamecocks were grouped into one cluster, whereas Luxi, Zhangzhou, and Xishuangbanna gamecocks were grouped into the other cluster. Gene flow occurred between Xishuangbanna and Turpan and Turpan and Luxi gamecocks. Simultaneously, gene flow was observed between gamecocks and indigenous chickens, such as Xishuangbanna and Wenchang. Ancestral component analysis indicated that modern domestic chickens in southern China played an important role in the history of the domestication of modern Chinese gamecock. Our study will be helpful in better understanding the domestication and evolution of Chinese gamecock.


Asunto(s)
Pollos , Variación Genética , Animales , Pollos/genética , Genoma , Genómica , China , Polimorfismo de Nucleótido Simple
13.
Plant Signal Behav ; 16(2): 1848086, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210579

RESUMEN

Cutting is a frequently used model to study the process of adventitious root formation, and excision of cuttings leads to rapid wound response signaling. We recently showed that as a wound signal, reactive oxygen species (ROS, mainly hydrogen peroxide) participate in adventitious root induction of hypocotyl cuttings through regulation of auxin biosynthesis and transport. Here, superoxide anion (O2-•), an early type of ROS, exhibited rapid burst at the cutting site immediately in response to wounding in Arabidopsis hypocotyl cuttings. Diphenylene iodonium chloride (DPI, inhibitor of NADPH oxidase) overwhelmingly suppressed O2-• propagation through the hypocotyl. Compared to wild type, O2-• burst only occur in cut base, and upward transduction were inhibited completely in NADPH oxidase mutant AtRbohD. These results indicate O2-• generation and propagation in response to wound and via NADPH oxidase in adventitious root induction of hypocotyl cuttings.


Asunto(s)
Arabidopsis/metabolismo , Superóxidos/metabolismo , Arabidopsis/efectos de los fármacos , Compuestos Onio/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Poult Sci ; 99(12): 6723-6736, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33248588

RESUMEN

Although a number of nongenetic factors have been reported to be able to modulate skeletal muscle phenotypes in meat-type birds, neither the underlying mechanisms nor the muscle group-specific phenotypic and molecular responses have been fully understood. In the present study, a total of 240 broiler ducks were used to compare the effects of floor raising system (FRS) and net raising system (NRS) on the physicochemical properties and global gene expression profiles of both breast and thigh muscles at the posthatching week 4 (W4), W8, and W13. Our results showed that compared with FRS, NRS generally induced higher pH, lower lightness (L∗) and yellowness (b∗), lower drip loss and cooking loss, and lower shear force in either breast or thigh muscles during early posthatching stages but subsequently showed less pronounced or even reverse effects. Meanwhile, it was observed that the raising system differently changed the myofiber characteristics depending on the muscle group and the developmental stage. Genome-wide transcriptome analysis showed that compared with FRS, NRS induced the most extensive gene expression changes in breast muscle (BM) at W4 but in thigh muscle (TM) at W13, suggesting the asynchronous molecular responses of BM and TM to the raising system and period. Most of differentially expressed genes in either BM or TM between NRS and FRS were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms associated with regulation of muscle cellular functions, metabolic and contractile activities, and tissue remodeling, indicating similar molecular mechanisms principally responsible for the raising system-caused phenotypic changes in both muscle groups. Nevertheless, several crucial pathways (e.g., adipocytokine signaling, AGE-RAGE signaling, and apoptosis) and genes (e.g., ANO6, ACER2, UCP3, DTL, and TMEM120A) were tightly related to the muscle group-specific adaptive remodeling on different raising systems. These data could not only contribute to a better understanding of the molecular mechanisms behind meat quality but also provide novel insights into the molecular causes of the muscle group-specific adaptive remodeling in response to environmental stimuli.


Asunto(s)
Crianza de Animales Domésticos , Patos , Músculo Esquelético , Transcriptoma , Crianza de Animales Domésticos/métodos , Animales , Patos/genética , Patos/crecimiento & desarrollo , Perfilación de la Expresión Génica/veterinaria , Estudio de Asociación del Genoma Completo/veterinaria , Carne/análisis , Carne/normas , Músculo Esquelético/fisiología , Fenotipo
15.
Artículo en Inglés | MEDLINE | ID: mdl-31736880

RESUMEN

Molecular mechanisms responsible for gonadotrophic control of ovarian follicle development and ovulation have not been fully delineated. In this study, prepubertal female rabbits were subjected to a combined PMSG/hCG treatment for the induction of follicle maturation and ovulation. Ovaries of 6 does at different time points during gonadotrophic stimulation were collected for histomorphological examination and genome-wide analysis of miRNA and mRNA transcriptomes, and the plasma were separated for detecting melatonin (MT), prostaglandin E2 (PGE2), estradiol (E2), and progesterone (P4) levels. The results suggested that PMSG promoted the development of the reproductive tract by decreasing plasma levels of E2 and slightly increasing those of MT and PGE2 and that hCG induced ovulation and corpus luteum formation by significantly increasing MT, PGE2, and P4 levels. At the transcriptomic level, a total of 1,122 differentially expressed genes (DEGs) and 12 DE miRNAs were identified using three-group comparisons. Meanwhile, pairwise comparisons revealed that 279 and 103 genes as well as 36 and 20 miRNAs were up- and down-regulated during PMSG-stimulated follicle development while 11 and 5 genes as well as 33 and 16 miRNAs were up- and down-regulated during hCG-induced luteinization. KEGG enrichment analysis of the DEGs derived from both three-group- and two-group comparisons as well as the predicted target genes of DE miRNAs highlighted the crucial roles of pathways involving tissue remodeling, energy metabolism, and regulation of cellular functions in mediating gonadotrophin-induced follicle maturation. Specifically, 3 genes including the matrix metallopeptidase 13 (MMP13), protein phosphatase 1 regulatory subunit 3C (PPP1R3C), and solute carrier family 2 member 12 (SLC2A12), together with 2 miRNAs including the miR-205-1 and miR-34c, were predicted to be the promising downstream targets of both PMSG and hCG. Significantly, the miRNA-mRNA interaction pairs containing top 10 up- and down-regulated mRNAs/miRNAs upon PMSG/hCG stimulation were established, and so were those involved in the PI3K-Akt, ECM-receptor interaction, and focal adhesion pathways during PMSG-induced follicle maturation. Finally, qRT-PCR analysis confirmed the results from RNA-Seq and Small RNA-Seq. Our work may contribute to a better understanding of the regulatory mechanisms of gonadotrophins on ovarian follicle development and ovulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA